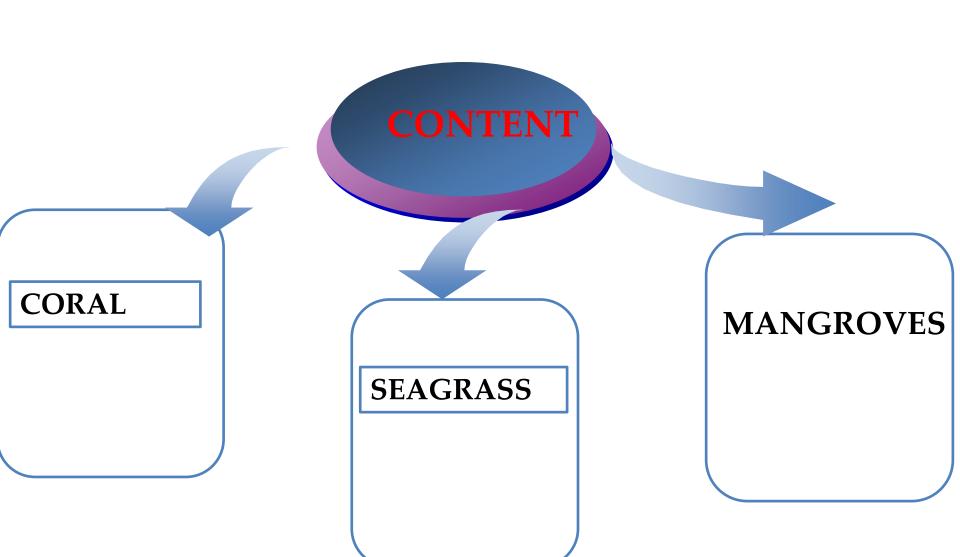
MARINE RESOURCES AND ENVIRONMENT MANAGEMENT

Topic 2 - MARINE RESOURCES 2.3 Coastal ecosystems



MATERIALS


- 1. Quản lý tài nguyên và môi trường biển, Nguyễn Kỳ Phùng, 2016
- 2. Quản lý biển, Lê Đức Tố, 2004
- 3. Quản lý tổng hợp vùng ven biển, Nguyễn Lân Anh, Trần Văn Phước, Nguyễn Trọng Lương, 2011
- 4. Quản lý nhà nước tổng hợp và thống nhất về biển, hải đảo, Đặng Xuân Phương,Nguyễn Lê Tuấn, 2014
- <u>5. Markus Salomon, Till Markus (eds.), Environmental Management and Governance:</u>
 <u>Advances in Coastal and Marine Resources [1 ed.], Springer International Publishing, 2015.</u>
- 6. Markus Salomon, Till Markus (eds.), Handbook on Marine Environment Protection. Science, Impacts and Sustainable Management, Springer, 2018.
- 7. G Carleton Ray, Jerry McCormick-Ray, Marine conservation: science, policy, and management, John Wiley & Sons Inc, 2014.
- 8. Islam, Nazrul; Jørgensen, Sven Erik, Environmental management of marine ecosystems, CRC Press, 2018.
- 9. Darius Bartlett, Louis Celliers, Geoinformatics for marine and coastal management, CRC Press, 2016.

MARE Global Distribution of Coral, Mangrove and Seagrass Diversity

Source: UNEP-WCMC, 2001.

1) Coral Ecosystem Taxonomy Coral

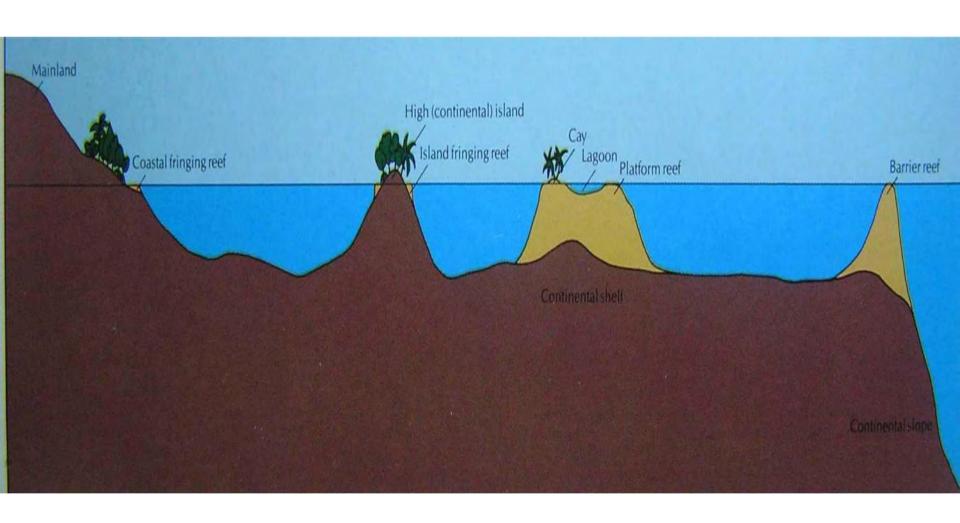
Class Coral (Anthozoa) is a class of invertebrates aquatic including sea anemones, rock corals and soft corals, belonging to the phylum Anthozoa

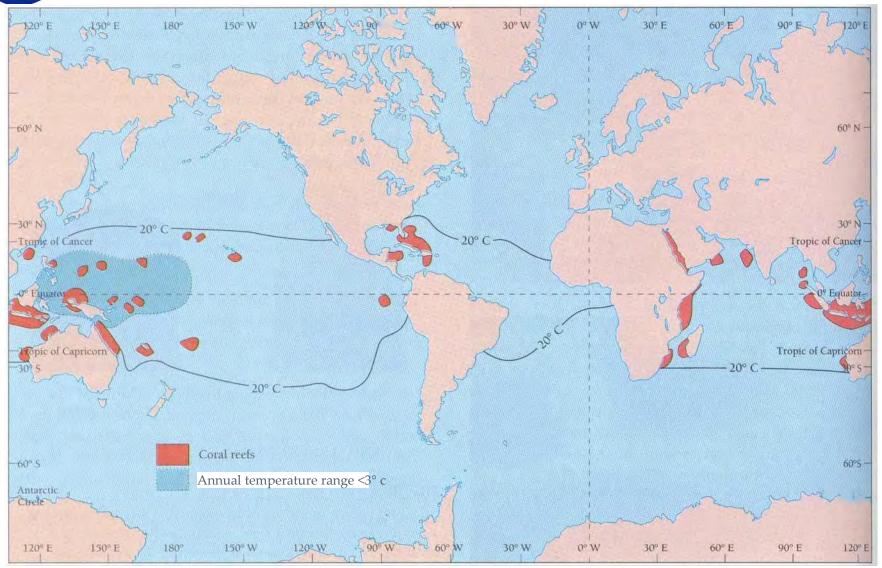
• There are 3 main groups: hard corals, soft corals and horn

corals

Structures of coral reefs

- 1. Atoll reef
- 2. Fringing reef.
- 3. Platform reef
- 4. Barrier reef


According to Veron, 2000



RESISTANCE STRUCTURE RESISTANCES

DISTRIBUTION OF CORAL IN THE WORL

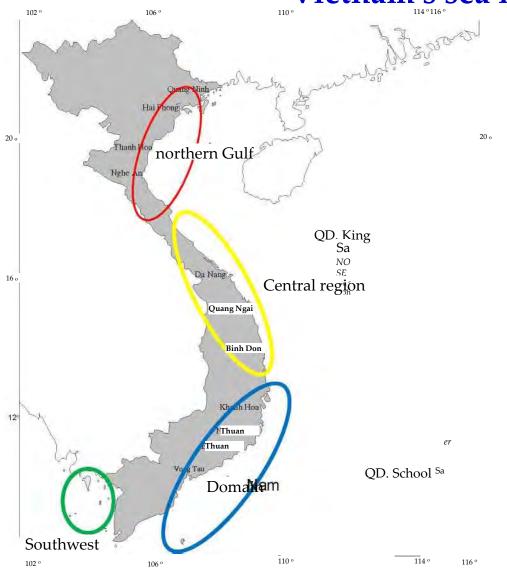
- World: 6 x 10 ⁵ kilometer ²

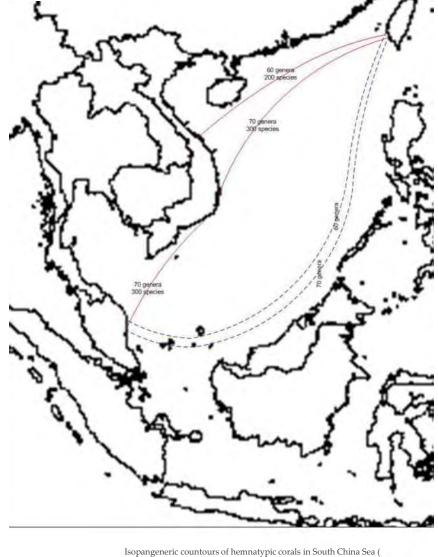
winter male ASIAN: 100,000 km

The importance of coral reefs

- High diversity
- Fisheries: direct and indirect(10%): 10.5 -31 tons/km2
- High biological productivity
- Tourism: high diversity
- Coastal protection
- Gene reserves
- Supply of pharmaceutical productsrare
- Other: research, education,...

Annual income from 1 square kilometer of coral reef


MARE


Forms of coral reef exploitation	Annual production capacity	Annual Income (USD)
Fisheries for domestic consumption	10 -30 tons	15,000 -45,000
	0.5 -1 tons	5,000 - 10,000
Export fisheries (live fish)		
Tourism	600 - 2,000 people	4,500 - 25,000
Coastal protection		5,000 - 25,000
Entertainment and variety born learn	600 - 2,000 people	2,400 -8,000
Total		31,900 - 113,000

Co-funded by the Erasmus+ Programme of the European Union

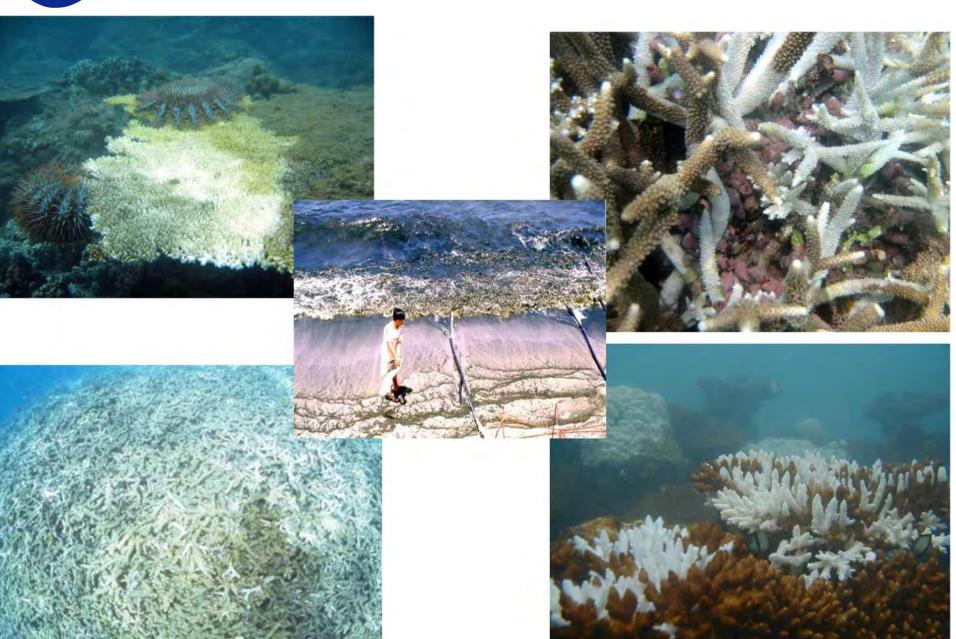
Zoning of the coral system creating Vietnam's sea reefs

..... after Veron, 1993; -----í Changing proposal)

Vo Si Tuan, 2014; Huang and cs, 2014;

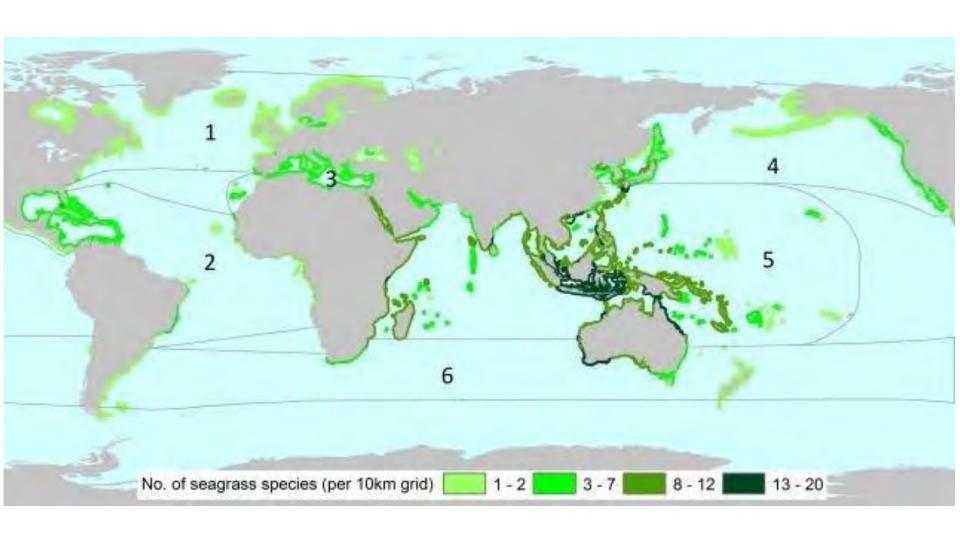
Threats to Vietnam's marine coral reefs

- Overexploitation
- Destructive mining



Natural disasters and harmful creatures

Tourist activities



- Seagrasses are underwater plants that evolved from land plants. They are like terrestrial plants in that they have leaves, flowers, seeds, roots, and connective tissues, and they make their food through photosynthesis.
- There are about 60 species of fully marine seagrasses which belong to four families, all in the order Alismatales. Seagrasses evolved from terrestrial plants which recolonised the ocean 70 to 100 million years ago
- Unlike terrestrial plants, however, they do not have strong stems to hold themselves up—instead they're supported by the buoyancy of the water that surrounds them. Seagrasses are a very important food source and habitat for wildlife, supporting a diverse community of organisms including fish, octopuses, sea turtles, shrimp, blue crabs, oysters, sponges, sea urchins, anemones, clams, and squid. Seagrasses have been called "the lungs of the sea" because they release oxygen into the water through the process of photosynthesis.

Seaweed

Seaweed with Seaweed?

- They are all lower plants

Multicellular Unicellular

Rhodophyta

- Rhodophytas have an additional pigment phicoerithrin that gives most of these algae their red color.
- In the tropics, they have the highest percentage of species groups.
- Diversity in morphology and size: single-celled or forming large flakes of several kg

Phaeophyta

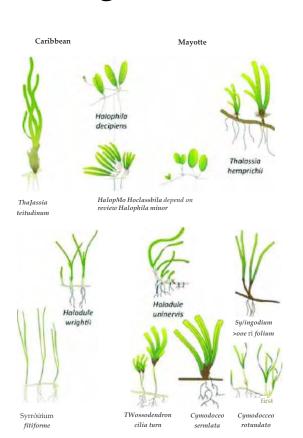
- Pigments: chlorophyll, carotene, xanthphin...
- - Different shapes.
- Cell membranes are low in cellulose, but high in alginic acid, up to 39%.

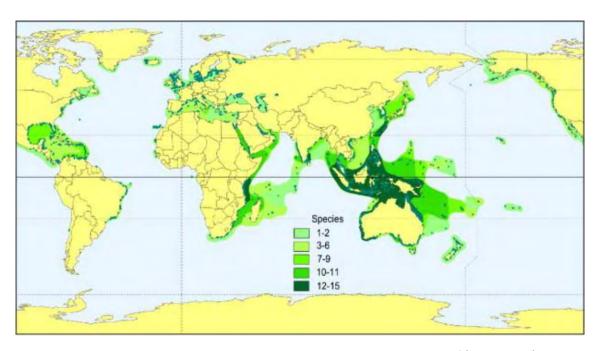
- Chlorophyta

- Chlorophyta have additional pigments chlorophyll a, b, carotene, xanthphin.

- The reserve substance usually starch.

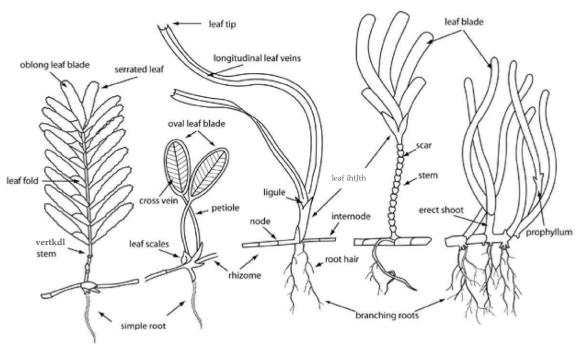
- Size: Unicellular multicellular



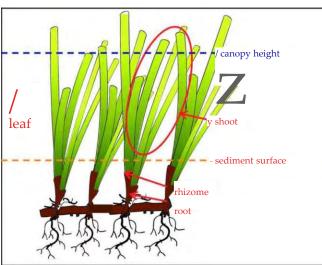


Seagrasses

Species distribution in the world



Short et al. 2017



Seagrasses

Seagrass shape

Seagrasses: Taxonomy and Species Diversity

Branch: Tracheophyta Class: Monocots The set: Alismales Surname: 4 Surname

Posidoniaceae	Zosteraceae	Hydrocharitaceae	Cymodoceaceae	
Genus: Posidonia	Genus Heterozostera*	Genus Halophila*	Genus Amphibolis	
7 species	2 species	20 species (Vietnam: 5)	2 species	
	Genus Nanozostera*	Genus Thalassia	Cymodocea	
	7 species	2 species (Vietnam: 1)	4 species (Vietnam: 2)	
	Genus Zostera	Genus Enhalus	Genus Halodule	
	6 species (Vietnam: 1)	first species (Vietnam: 1)	8 species (Vietnam: 2)	
	Phyllospadix		Genus Syringodium: 2 species; first	
	5 species		Genus Thalassodendron: 3 species; first	
7	20	23	19	

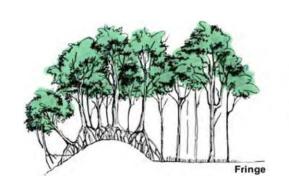
3) Mangroves

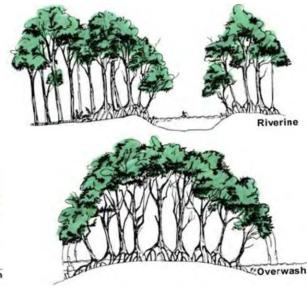
- Mangroves Mangrove ecosystems
- Mangroves: are shrubs, tall trees living in areas affected by tides, lagoons.
- Mangrove forest: A collection of many mangrove tree populations
- Mangrove ecosystem: Including flora and fauna associated with mangroves

3) Mangroves

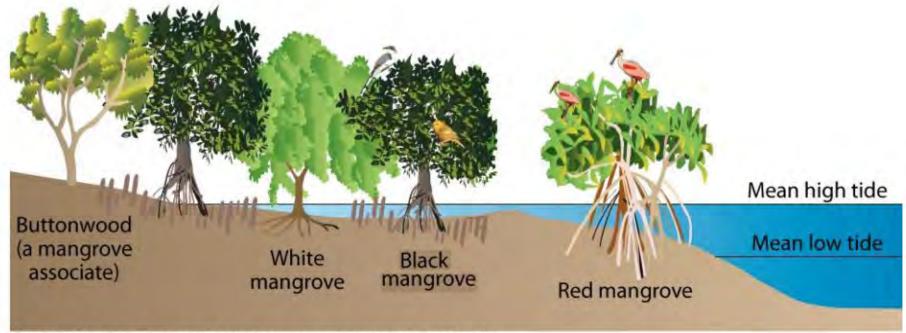
- Mangroves are a tropical species of trees or shrubs that have adapted to live in coastal regions. They grow on loose wet soil that is periodically flooded by salty seawater during high tides.
- There are about 54 species of mangroves in the world, and we have four of those types in the Caribbean: Red, Black, White, and Buttonwood mangroves. The bark of mangroves is used as a source of dyes, and as durable and water resistant wood. Black and Buttonwood mangroves are used in charcoal production.
- Mangrove fruits can be eaten, and the leaves can be consumed as tea and medicine.

3) Mangroves



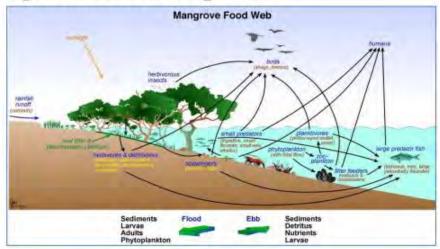

Basic information

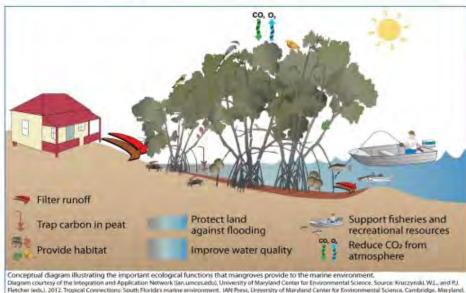
Types of mangroves



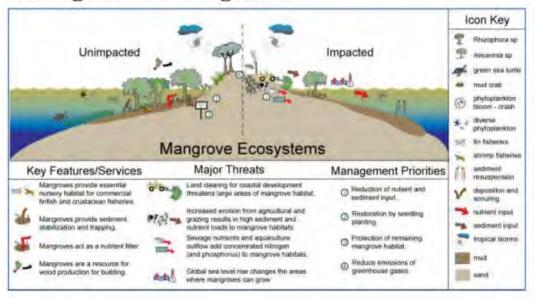
Basic information

"Mangrove zonation" describes the order in which the four different types of mangroves are found on land. The red mangrove is closest to the water, while the buttonwood mangrove is found the farthest from the water (deeper inland). Their positions depend on land elevation, water and soil salt levels, and tidal changes.


Conceptual diagram illustrating the dominant mangrove species of south Florida.


Diagram courtesy of the Integration and Application Network (ian.umces.edu), University of Maryland Center for Environmental Science. Source: Kruczynski, W.L., and P.J. Fletcher (eds.). 2012. Tropical Connections: South Florida's marine environment. IAN Press, University of Maryland Center for Environmental Science, Cambridge, Maryland. 492 pp.

Importance of Mangroves



- Provide a physical habitat and nursery grounds for marine organisms
 - These organisms have important recreational and commercial value
 - Mangroves are nurseries for shrimp, crabs, and fish
 - The roots protect organisms from predators
- Serve as buffers for storms (and hurricanes)
 - Mangroves reduce the damaging effects of storm winds and waves.
- · Protect shorelines from erosion
 - Mangrove roots hold sediments and loose soil together. They stabilize the land
- Provide roosting and nesting sites for many birds
- Improve water clarity and quality
 - The tangled root systems filter runoff that may include pollutants.
 They trap sediments and debris from the land
- Provide food for many marine organisms
 - Fish like the snook, gray snapper, and the tarpon find food here
- Trap and cycle organic materials, chemicals, and nutrients that sustain ecosystems
- Support endangered species
 - The hawksbill and green sea turtle, for example
- Used as a renewable resource
 - o As mentioned in the introduction

Damage to the Mangroves

Climate change

- Mangroves require a stable sea level to survive
- Climate change causes sea levels to rise

Floods and Hurricanes

- Strong waves and currents prevents seedlings from taking root in the sediment and washes nutrients away
- Wildlife, pests, and weeds
 - Wildlife damage seedlings, leaves, flowers, roots, and propagules
 - Pests eat mangrove foliage and damage the wood
 - Weeds restrict the growth of mangroves

Tourism

Visitors bring garbage, sewage, noise, fumes, lights, and other disturbances that put a stress on mangrove ecosystems

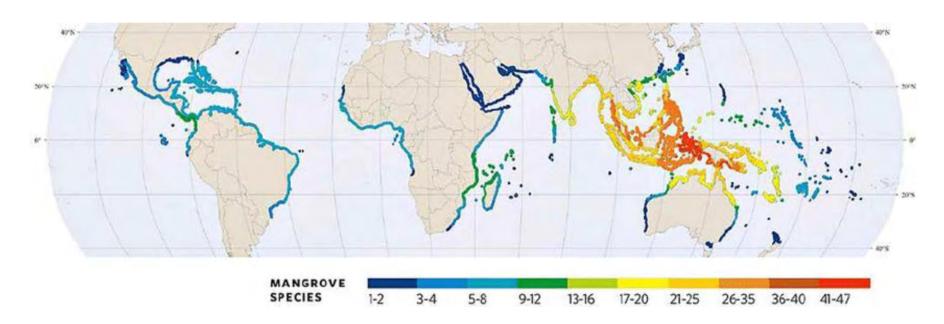
Coastal development

- Building of ports, docks, hotels, marinas, and human settlements pollute the water and mangrove forests
- People involved in the construction bring traffic, garbage, and noise which put a stress on mangroves and their habitats
- o Deforestation increases erosion and the amount of sediments in the water, which affects mangroves' filtering ability

Agriculture

- Mangrove forests are being cleared to make way for rice paddies, rubber trees, palm oil plantations
- Fertilizers, pesticides, waste, and other agricultural products block pneumatophores, chocking the mangroves
- o Natural flow of water to mangroves is disrupted by paving roads over waterways or diverting waterways for irrigation

Lumber industries


- Mangrove wood is harvested for building material, fencing, fuel, firewood, construction wood, and charcoal production
- The problem is that the harvesting of wood is no longer sustainable

Shrimp farming

- Mangrove forests are being replaced by artificial shrimp farming ponds
- Farmers divert water to their ponds, which reduces the amount of freshwater supplied to mangroves and makes it difficult for mangrove seeds to be dispersed

Distribution of mangroves in the world

Annual % Change

-0.21

Area mangrove forest In the world

- Current area now: 145,494 km2 in 108 countrys
- - Failure reduce : 9,736 km2 from year 1996

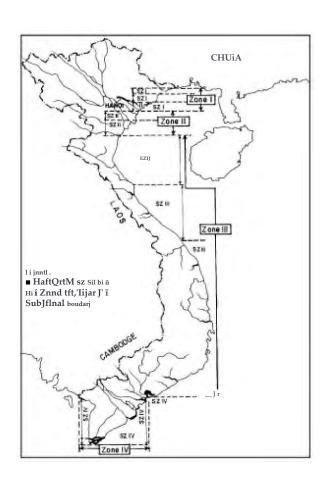
-0.25

Global mangrove losses and gains, 1996-2016, including annualised percentage change Variable 1996 2007 1996-2016 2016 2010 142.795 136.714 Extent (kilometer ²) 138,901 137,629 Losses (krr ²> 5,969 3,498 3.057 8,437 Gains (kilometer ³) 2.074 2.142 2.356 2,227 -2.73-0.92-0.664.26 % Change

-0.31

-0.11

Area of mangroves in the world Areas of decline, recovery


By region: global mangrove net losses and gains, 1996-2016, Including annualized percentage change

Region	1996 Area		Loss km ²		%	Annual %
	km ²	km ²		km ²	Change	Change
Australia & New	10,332	10,037	370	74	-2.86	-0.14
Zealand	10,332	10,037	370	74	-2.00	-0.14
East & Southern	7,630	7,329	424	122	-3.95	-0.2
Africa	7,030	7,329	424	122	-3.93	-0.2
East Asia	159	159	12	13	0.55	0.03
North & Central						
America & the	22,702	21,072	2,196	566	-7.18	-0.36
Caribbean						
Pacific Islands	6/410	6,327	146	63	-1.29	-0.06
South America	19,632	19,063	1,106	537	-2.9	-0.14
South Asia	8,701	8,492	435	226	-2.4	-0.12
South East Asia	46,789	44,060	3,308	579	-5.83	-0.29
The Middle East	334	319	19	4	-4.54	-0.23
West & Central						
Africa	20,107	19,857	422	171	-1.24	-0.06
Total km ²	142.795	136.714	8,437	2,356	-4.26	-0.21

Mangroves in Vietnam


Divided into 4 regions:

- I. Mui Ngoc-Do Son
- II. II. Along the coast of the Northern Delta, from Do Son cape to Lach Truong estuary
- III. III. Central Coast from Lach Truong estuary to Vung Tau cape
- IV. IV. South Coast, from Vung Tau cape to Ha Tien

Distribution of Mangrove Forest in Viet Nam

