

## LECTURE

## **MODELLING THE MARINE ENVIRONMENT**

#### Lecturer: Prof. Nguyen Ky Phung MSc. Dang Thi Thanh Le







# LECTURE NOTE MODELLING THE MARINE ENVIRONMENT

# **COURSE SYLLABUS**

Lecturer: Prof. Nguyen Ky Phung MSc. Dang Thi Thanh Le

## **GENERAL INFORMATION**

Vietnamese subject name:

English subject name:

Code subject:

Knowledge block:

Number of credits:

Number of theoretical periods / sessions:

Number of practice periods / sessions:

Prerequisite subject:

Mô hình hóa môi trường biển

Modelling the Marine

Environment

Specialized

4,5 ETCs

45 periods

No

No

# **COURSE DESCRIPTION**

The course provides basic knowledge of modeling pollutant transmission processes in marine environments. In addition, the course introduces basic applications of modeling pollution processes in solving practical problems of marine pollution.



## **COURSE GOALS**

Students are equipped with knowledge of:

- The processes of the transmission of substances to the marine and ocean environment.
- Determine the marine environment problem and find a suitable solution.
- Skills to use basic modeling in the simulation of substance transmission processes.

Work at the individual level and team collaboration to communicate, discuss among individuals in groups to study and report.

## **LEARNING OUTCOMES**

By the end of the course, successful students will:

| Knowledge     | <ul> <li>Understanding the role of marine environment modeling</li> <li>Presenting the basic knowledge of flow dynamics and hydrography, the basic knowledge of modeling of substance transmission in marine environment.</li> <li>Simulating the processes of substance transmission in marine environment.</li> <li>Analysis of natural systems and design of numerrical models</li> <li>Using basic models in simulating contaminants transmission processes in marine environment.</li> </ul> |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Comprehensive | <ul> <li>Presenting the basic knowledge of flow dynamics and<br/>hydrography, the basic knowledge of modeling of substance<br/>transmission in marine environment.</li> </ul>                                                                                                                                                                                                                                                                                                                     |
| Application   | Simulating the processes of substance transmission in water                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Analysis      | Analysis of natural systems and design of numerical models                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Synthesis     | Using basic models in simulating contaminants transmission processes in marine environment.                                                                                                                                                                                                                                                                                                                                                                                                       |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

# **COURSE ASSESSMENT**

Course assignments will constitute a multi-part project:

- Assignment #1 -(in-class) : will help students understand the basic knowledge of dynamics currents and tides.
- Assignment #2 (home work): will help students understand the basic knowledge of flow dynamics and hydrography
- Assignment #3 –(home work): will help students understand the processes of the transmission of substances to the marine and ocean environment
- Assignment #4 (mostly in-class): Understanding the basic knowledge of flow dynamics and hydrography, the basic knowledge of modelling of substance transmission in marine environment.

#### Grading

#### Assessment

- Progress assessment (40%):
  - Exercise (15%):
  - Homework (15%):
- Semi- Final examination (10%)
- Final examination (50%)

Evaluation

A 
$$(8,5 - 10)$$
  
B  $(7,0 - 8,4)$   
C  $(5,5 - 6,9)$   
D  $(4.0 - 5.4)$ 

## REFERENCES

#### Literature

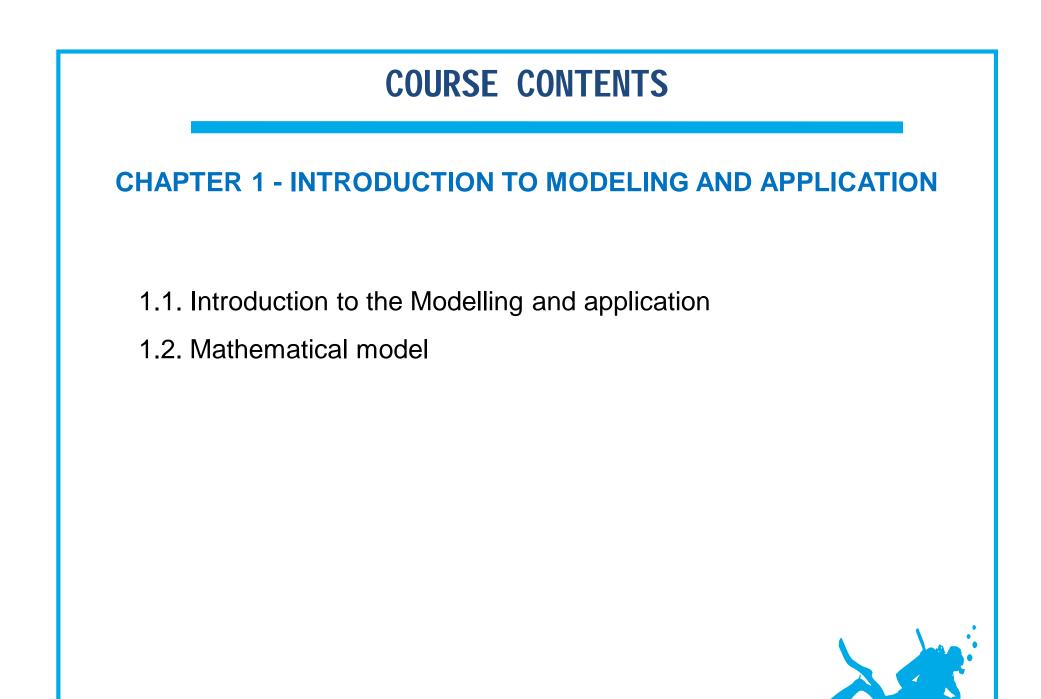
Compulsory

[1]. Lecture of Modeling of the marine environment.

#### **Recommended:**

[1] Chapta S.C. Surface water-quality modeling. Waveland Press Inc., 2008
[2] Visscher A.D. Air dispersion modeling – Foundations and Applications.
Wiley Publishing, 2014.
[3] Nihoul J.C.J., Modeles mathematiques et Dynamiques de l'environment, Ele, Liege, 1977.

[4] Mooers C.N.K., (editor), Coastal Ocean Prediction, AGU, Washington, 1999.


[5] Stewart R., Introduction to Physical Oceanography, Texas A&M University, 2002.

### **COURSE CONTENS**

- 01 Introduction to the Modelling and application
- 02 Dynamics of currents and tides.
- 03 Process of substance transmission.
- 04 Modeling the marine and ocean environment
- 05 An introduction to model used in simulation marine and ocean process







## **COURSE CONTENTS**

#### CHAPTER 2 – DYMAMICS CURRENT AND TIDES

- 2.1. Hydrodynamic Equation
- 2.2. Some approximations in marine and ocean studies
- 2.3. Theory of flow
- 2.4. Ocean tides

## **COURSE CONTENTS**

#### CHAPTER 3 - PROCESS OF SUBSTANCE TRANSMISSION

- 3.1. Equation of substance transmission
- 3.2. Analytical solutions for some cases
- 3.3. Advection and Diffusion

3.4. The process of substance transmission for non-conservative substance

## **COURSE CONTENTS**

#### **CHAPTER 4 - MODELING OF MARINE AND OCEAN ENVIRONMENT**

- 4.1. Computation method
- 4.2. Application of the Finite Difference Method in some specific cases

# **COURSE CONTENTS CHAPTER 5 - AN INTRODUCTION TO MODEL USED IN SIMULATION MARINE AND OCEAN PROCESS** 5.1. Fundamental 5.2. Several modeling applications in the simulation of substance transmission in marine and ocean environments

