

Course Name: GIS APPLICATION IN MARINE RESOURCE MANAGEMENT

Number of credits: 4,5 ECTs

Period: Fall/spring semester

Coordinator	Faculty of Marine Resource Management
Credits	4,5 ECTS
Lecturers	Dr. Le Thi Kim Thoa
Level	Undergraduate
Host institution	Ho Chi Minh City University of Natural Resources and Environment
Course duration	1 semester (the classes will be scheduled in accordance with the
	university timetable)
New/revised	Revised (35%)

Summary

The course of GIS application in marine resource management is a subject that equip students with the basic knowledge of database management and necessary skills in understanding, exploiting and applying an integrated technology that has been widely used in many fields, especially in marine resources management. The module provides students with skills in database design, GIS application to develop and the create thematic maps to serve in the field of marine resource management.

Target student audiences

BSc. students majoring in Marine Resource Management

Prerequisites

Required courses (or equivalents): NO

Aims and objectives

The main course objective is to equip students with knowledge of:

- Understanding the basic knowledge of database management and applications of GIS in marine resource management
- Exploring various sources of geographic data and the types of spatial data, including vector and raster data.
- How to collect and input geographical data into GIS system.
- Techniques for processing and analysing spatial data (spatial queries, buffering, overlays...)
- Methods for visualizing and presenting spatial data
- Organising and managing spatial datasets, databases.
- Final GIS project and present student's findings.

The Authentic Tasks are:

The course will provide students with knowledge of GIS fundamental and its application in marine resources management. Exploring various sources of geographic data and the types of spatial data, and how to visualize and present spatial data.

General learning outcomes:

By the end of the course, successful students will:

Knowledge

- Understanding the theoretical basis of GIS and applications of GIS in marine resource management
- Exploring various sources of geographic data and the types of spatial data, including vector and raster data.

Co-funded by the Erasmus+ Programme of the European Union

- Inputing geographical data into GIS system.
- Visualizing, analysing and presenting spatial data

Comprehensive

- Different type of spatial data.Techniques for processing spatial data
- Methods for visualizing and presenting spatial data

Application

Apply GIS to pilot project to solve the specific problem in the field of marine _ resources manamgement.

Analysis

Analysing spatial data in the real world -

Overview of sessions and teaching methods

The course will make most of interactive and self-reflective methods of teaching and learning and, where possible, avoid standing lectures and presentations.

Learning methods

- Video presentations
- Surveys, assignment
- Project Based Learning
- Literature review
- Query
- Team work

Course outline

Week topics

Week 1	Systematize basic knowledge of GIS and the ability to apply GIS in marine resources
	management
Week 2	Some GIS software and the content and data structure of the GIS database
Week 3	Get familiar with some basic functions in ArcGIS
Week 4	Building a geodatabase
Week 5+6	Visualizing database
Week 7+8	Database query
Week 9+10	Spatial analysis
Week 11	Database conversion
Week 12	Map editor
Week 13+	Building database
14+15	

Course Schedule

Topic 1 - Systematize basic knowledge of GIS and the ability to apply GIS in marine resources management

Learning objectives	 Introduction to GIS GIS application in different fields, specific in marine resources management
Learning outcomes	 Understanding and able to express the definition of GIS and its components and functions. Understanding the role of GIS application in marine resources management.

Co-funded by the Erasmus+ Programme of the European Union

Student deliverables	Homework: Working in group and preparing some application of GIS the the field of marine resources management.
Topic materials	Lecture of GIS application in marine resources management
Outline	1.1. Geographic information, geographic information system1.2. Role and capabilities of GIS1.3. GIS applications in marine resource management

Topic 2- Some GIS software, content and data structure of GIS database (10 % revised)

Learning objectives	Famililar with different types of GIS products available.Understanding the data structure of GIS
Learning outcomes	 Distinguish different types of GIS products available Demonstrate the data structure of GIS
Student deliverables	Exercise: learn about GIS software packages and their strengths for speccific purposes.
Topic materials	Lecture of GIS application in marine resources management
Outline	2.1. Some commercial GIS software2.2. Some opensource GIS software2.3. Introduction to ARCGIS Desktop2.4. Standard database format of ARCGIS

Topic 3 - Get familiar with the ARCGIS interface (10 % revised)

Learning objectives	 Get familiar with the ARCGIS interface Some basic display functions in ArcMap Get familiar with ARCMAP with Ho Chi Minh database
Learning outcomes	 Open and perform basic operations on a map to work with the given geographic data to create a map. Understand geographic data (organization, spatial representation, attributes)

Student deliverables	Exercise: practice in class and homework
Topic materials	Lecture of GIS application in marine resources management
Outline	3.1. Get familiar with the ARCGIS interface3.2. Some basic display functions in ArcMap3.3. Practice in class with Ho Chi Minh database

Topic 4: Building geodatabase (10 % revised)

Learning objectives	 Understand what is geodatabase and how to create a geodatabase Create data into geodatabase Import data into geodatabase
Learning	
outcomes	• Understanding the role of geodatabase.
	• Able to create a geodatabase and import data into geodatabase.
Student deliverables	Exercise: practice in class and homework
	Lecture of GIS application in marine resources management
Topic materials	
Outline	4.1 Geodetabase definition the role of geodetabase
	4.1. Geodatabase definition, the fole of geodatabase
	4.2. Create a geodatabase
	4.3. Input data into geodatabase
	4.4. Import data into geodatabase

Topic 5- Visualising database (35 % revised)

Learning objectives	Display spatial and attribute data in different types of representing categories, qulatities, multiple attributes, charts
Learning outcomes	Able to display data with various types of representation.
Student deliverables	Exercise: practice in class and homework
Topic materials	Lecture of GIS application in marine resources management
Outline	5.1. Displaying spatial and attribute data
	5.2.Visualysing data in categories
	5.3. Visualysing data in quantities
	5.4. Visualysing ata in multiple attributes
	5.5. Visualysing data in charts

Topic 6- Database queries (35 % revised)

Learning objectives	Understand data queries and data analysis in GIS and perform some basic operations in ARCGIS
Learning outcomes	Understand and execute queries based on attribute-related conditions - Understand and perform queries based on spatial relationships
Student deliverables	Exercise: practice in class and homework
Topic materials	Lecture of GIS application in marine resources management
Outline	6.1. Query data by attribute database
	6.2. Query data by spatial database
	6.3. Query data by both spatial and attribute database

Topic 7- Spatial analysis (35 % revised)

Learning objectives	Understand data analysis in GIS and perform some basic operations in ARCGIS.
Learning outcomes	Understand and perform some basic analysis: buffering, overlay, intersect
Student deliverables	Exercise: practice in class and homework
Topic materials	Lecture of GIS application in marine resources management
Outline	7.1. Layer overlap analysis
	7.2. Analyze spatial relationships

Topic 8- Map convertion (45 % revised)

Learning objectives	Understand data in different data format and convert them into shapefile in ARCGIS.
Learning outcomes	Able to convert different data format and convert them into shapefile in ARCGIS.
Student deliverables	Exercise: practice in class and homework
Topic materials	Lecture of GIS application in marine resources management
Outline	8.1. Convert data from AutoCAD to Shape file
	8.2. Convert data from Mapinfo to Shape file
	8.3. Convert data from Microstation to Shape file

Topic 9- Map editor (30 % revised)

Learning objectives	Understand how to export a complete map for printing (paper format) or export maps in formats such as: image, .PDF (digital format)
Learning outcomes	Able to create and export a complete map for printing or export maps in digital formats in ARCGIS.
Student deliverables	Exercise: practice in class and homework
Topic materials	Lecture of GIS application in marine resources management
Outline	9.1. Introducing the components of the map
	9.2. Map page layout: create and arrange map elements on the printed page
	9.3. Print and export map pages

Topic 10- Building database (15 % revised)

Learning objectives	Visualize and perceive different spatial data sources in GIS	
	Initialize GIS spatial data	
	Edit GIS spatial data	
Learning outcomes	• Able to practice operations to work and edit spatial data such as create new data layer; create new objects; edit spatial objects.	
	• Able to create and edit GIS data from different sources: GIS data source; Paper map data source; direct measurement data.	
Student deliverables	Exercise: practice in class and homework	
Topic materials	Lecture of GIS application in marine resources management	
Outline	10.1. Building dataset from thedata tables	
	10.2. Building a database from remote sensing images	
	10.3. Building a database from paper maps	

Literature

[1] Lecture of GIS application in marine resources management

Recommended:

[2] Tran Vinh Phuoc, 2003, General GIS - theoretical part, Ho Chi Minh City National University Publishing House, Ho Chi Minh City.

[3] Nguyen Kim Loi, Tran Thong Nhat, 2008, Geographic Information System, Publishing House. Agriculture, Ho Chi Minh City.

[4] Dang Van Duc, 2001, Geographic Information System, Hanoi Science and Technology Publishing House, Hanoi.

[5] Tran Trong Duc, 2010, Basic GIS, Publishing House. City National University. Ho Chi Minh City, Ho Chi Minh City.

[6] Tor Bernhardsen, 2002, Geographic Information Systems – An Introduction, 3rd edition, John Wiley & Son.

[7] Jochen Albrecht, 2007, Concepts and techniques in GIS, Sage.

[8] Paul Longley, Michael Goodchild, David Maguire, David Rhind, 2004, Geographic Information and Science, 2nd edition, John Wiley & Son.

[9] Rolf A. de By et al., 2001, Principles of geographic information systems – An introductory textbook, ITC, Netherland.

Course workload

The table below summarizes course workload distribution:

Activities	Learning outcomes	Assessment	Estimated workload (hours)
In-class activities (45 hou	ırs)		
Lectures (2 hours/ week)	Understanding theories, concepts, methodology and tools	Class participation	20
Moderated in-class discussions (1 hours/ week)	Understanding the role of GIS and its application	Class participation and preparedness for discussions	10
In-class assignments, homework assignment (0,5 hours/ week)	Practicing in the computer lab	Class participation and preparedness for assignments	5
Reading and discussion of assigned papers for	Familiarity with and ability to critically and creatively discuss key	Class participation,	5

seminars and preparation for lectures	concepts, tools and methods to visualyse database	creative and active contribution to discussion	
Group presentation	Ability to interpret data, to analyze audience, and to use the concepts, tools, and methods for visualing, analysing database	Quality of group assignments and individual presentations	5
Independent work (90 h	ours)		
 Group work: Contribution to the group case-study projects Contribution to the preparation and delivery of individual presentation 	Ability to interpret data, to analyze audience, and to use the concepts, tools, and methods for communicating information to all participants	Quality of group assignments and individual presentations	30
Course group assignment	Working in group and preparing pilot study	Quality of group assignments and individual presentations	30
Group presentation	Ability to interpret data, to analyze audience, and to use the concepts, tools, and methods for analysis database	Quality of group assignments and individual presentations	30
Total			135

Course Assignments

Course assignments will constitute a multi-part project:

- Assignment #1 (Home work): working in group and preparing some application of GIS the the field of marine resources management.
- Assignment #2 (Home work): Working in group and preparing about GIS software packages and their strengths for specific purposes.
- Assignment #3 (Home work): Working in group visualysing databases
- Assignment #4 (Home work): Working in group preparing database queries
- Assignment #5 (Home work): Working in group preparing database analaysis
- Assignment #6 (Home work): Working in group preparing map editor
- Assignment #7 (Home work): Working in group preparing pilot dtudy

Co-funded by the Erasmus+ Programme of the European Union

Grading

The students' performance will be based on the following:

Assessment	 Progress assessment (40%): Exercise in class (10%): Homework (15%): Semi- examination (15%)
	• Final assessment (60%):
	 Group report (30%): The students will be divided into groups of 4-5 students and choose 1 topic and complete the group project report according to the specific requirements of each topic. Final examination (30%)
Evaluation	A (8,5 - 10)
	B (7,0 - 8,4)
	C (5,5 - 6,9)
	D (4,0 - 5,4

Co-funded by the Erasmus+Programme of the European

