

LECTURE 3: DYNAMICS CURRENTS AND TIDES

Lecturer: Prof. Nguyen Ky Phung MSc. DangThi Thanh Le MSc. Tran Thi Kim

CONTENTS

- *** REACTION FUNDAMENTALS**
- Reaction Types
- Reaction Kinetics
- * ANALYSIS OF RATE DATA
- The integral Method
- The differential method
- ✤ TEMPERATURE EFFECTS

REACTION TYPES

- Homogeneous reaction: involve a single phase, (that is, liquid, gas, or solid)
- Heterogeneous reaction: involve more than one phase, with reaction usually occurring at the surface between phase
- Irreversible reaction: These proceed in a single direction and continue until the reactants are exhausted.
- Reversible reaction: can proceed in either direction, depending on the relative concentration of the reactants and the products.

ZERO-, FIRST AND SECOND – ORDER REACTIONS

*** Zero - order**(n = 0)

Equation (*): $\frac{dC}{dt} = -k$

Where: k has units of ML⁻³T⁻¹

If $C = C_0$ at t =0, then this equation can be integrated by separation of varibales to yield:

$$C = C_0 - kt$$

- A constant rate of depletion per unit time
- Plot of concentration versus time yields a straight line

 $\ln C_0$

C **4**

Co-funded by the Erasmus+ Programme of the European Union

ZERO-, FIRST AND SECOND – ORDER REACTIONS

- First order(n = 1)
- Equation(*): $\frac{dC}{dt} = -kC$ where k has units of T⁻¹

If C = C₀ at t =0, then this equation can be integrated by separation of variables to yield: In c – In $c_0 = -kt$

where $k' = \frac{k}{2.3025}$

Taking the exponential of both sides gives: $C = C_0 e^{-kt}$

- The concentrations decrease following exponential function
- The concentration curve asymptotically approaches zero with time
- Taking te inverse logarithm base e to base -10

$$C = C_0 10^{-k't}$$

ZERO-, FIRST AND SECOND – ORDER REACTIONS

Second - order(n = 2)

Equation(*):

where k has units of L³M⁻¹T⁻¹

 $1/C_0$

If $C = C_0$ at t =0, then this equation can be integrated by separation of variables to yield 1/C

• Plot of 1/c versus t should yield a straight line

 $\frac{1}{C} = \frac{1}{C_{c}} + kt$

 $\frac{dC}{dt} = -kC^2$

The above equation can also expressed in term of concentration as a function of time by inverting to gives:

$$C = C_0 \frac{1}{1 + kC_0 t}$$

ZERO-, FIRST AND SECOND – ORDER REACTIONS

- ✤ n order (n≠1)
- Equation(*): $\frac{dC}{dt} = -kC^n$

If $C = C_0$ at t =0, then this equation can be integrated by separation of variables to yield

$$\frac{1}{C^{n-1}} = \frac{1}{C_0^{n-1}} + (n-1)kt$$

Plot of 1/Cⁿ⁻¹ versus t should yield a straight line

Solution for c:
$$C = C_0 \frac{1}{\left[1 + (n-1)kC_0^{n-1}t\right]^{1/(n-1)}}$$

8

ANALYSIS OF RATE DATA

A simple approach is to measuring concentrations in each bottle over time to develop a relationship between concentrations and time.

ANALYSIS OF RATE DATA

The integral method:

- Step 1: guessing n
- Step 2: Integrating equation (*) to obtain a function, C(t)
- Step 3: Graphical methods are then employes to determine whether the model fits the data adequately

Order	Rate units	Dependent y	Independent x	Int <mark>ercep</mark> t	Slope	
n=0	M(L ³ T) ⁻¹	С	t	C ₀	-K	
n=1	T-1 '	InC	t	InC	-K	
n=2	L ³ (MT) ⁻¹	1/C	t	1/C ₀	ĸ	
n #1	(L ³ M ⁻¹) ⁿ⁻¹ T ⁻¹	C ¹⁻ⁿ	t	C ₀ ¹⁻ⁿ	(n-1)K	

ANALYSIS OF RATE DATA

Example 1: Employ the integral method to determine whether the following data is zero-, first, second – order

t (day)	0	1	3	5	10	15	20
C (mg/l)	12	10.7	9	7.1	4.6	2.5	1.8

If any of these models seem to hold, evaluate k and c_o

Solution:

To determine whether the following data is zero-, first, second – order, we will evaluate for each order.

The best-fit line for this case as below: lnC = 2.47 - 0.0972t which $R^2 = 0.995$ Therefore the estimates of two model parameter are: $k = 0.0972 \text{ day}^{-1}$ $C_0 = e^{2.47} = 11.8 \text{ mg/l}$ Thus the resulting model is $C = 11.8e^{-0.0972t}$

log

dC_A dt Co-funded by the Erasmus+ Programme of the European Union

slope = n

CA

00

14

ANALYSIS OF RATE DATA (cont.)

The differential Method

Taking the logarithmic of both sides of Equation(*), to give:

$$\log\left(-\frac{dC}{dt}\right) = \log k + n\log C$$

Plot of log (-dC/dt) versus log C should yield a straight line with a slope of n and an intercept of log k

Numerical differentiation: Finite -Difference approximations to estimate dC/dt.

Centered Differentiation

$$\frac{\mathrm{dC}_{\mathrm{i}}}{\mathrm{dt}} \cong \frac{\Delta \mathrm{C}}{\Delta \mathrm{t}} = \frac{\mathrm{C}_{\mathrm{i+1}} - \mathrm{C}_{\mathrm{i-1}}}{\mathrm{t}_{\mathrm{i+1}} - \mathrm{t}_{\mathrm{i-1}}}$$

ANALYSIS OF RATE DATA (cont.)

The differential Method (cont.)

<u>t</u>			t _o	t ₁	t ₂	t_3 t_4 t_5					
С			C ₀	C ₁	C ₂	C_3 C_4 C_5					
l ▲ F	ادىتە	aroa	difforor	tiation	Drawing sm <mark>ooth cu</mark> rve that best						
V L	quar		unerer	itiation		approximates the area under the					
t	С	∆t	ΔC	∆C/∆t	dC/dt	histogram, t <mark>ry to ba</mark> lance out the histogram					
t ₁	C ₁				(dC/dt) ₁	areas above and below the drawn curve.					
	•	$t_2 - t_1$	$C_2 - C_1$	$(\Delta C/\Delta t)_2$		Then the de <mark>rivative</mark> estimates at the data					
t ₂	C ₂	t ₃ – t ₂	$C_{3} - C_{2}$	(∆C/∆t) ₃	(dC/dt) ₂	points can be read directly from the curve. $(\Delta C / \Delta t)_2$					
t ₃	C ₃				$(dC/dt)_3$						
4	0	$t_4 - t_3$	$C_4 - C_3$	$(\Delta C/\Delta t)_4$	(-10(-14)	(dC/dt) ₂					
t ₄	C_4	+ +		(AC/At)	(dC/dt) ₄	$-\Delta C$					
<u>t₅</u>	C ₅	ι ₅ — ι ₄	0 ₅ – 0 ₄		(dC/dt) ₅	∆t					
						1 2 3 t 4 5					

ANALYSIS OF RATE DATA (cont.)

The differential Method (cont.)

ANALYSIS OF RATE DATA (cont.)

Example 2: Use the differential method to evaluate the order and the constant for the data from Example 1. Use equal-area differentiation to smooth the derivative estimates

t (d)	0	1	3	5	10	15	20
C (mg/l)	12	10.7	9	7.1	4.6	2.5	1.8

Solution:

Determine derivative estimate from time series of concentration

	t	С	-∆C/∆t	-dC/dt	logC	log(-dC/dt)	
	(day)	(mg/l)	mg/	/l/d			
	0	12.0		1.25	1.08	0.1	
			1.3				1.5 $_{ op}$
	1	10.7		1.1	1.03	0.04	
			0.85				
	3	9.0		0.9	0.95	-0.05	
			0.95				
	5	7.1		0.72	0.85	-0.14	
			0.50				
	10	4.6		0.45	0.66	-0.35	
			0.42				
	15	2.5		0.27	0.40	-0.57	0 5 10 15 20
			0.14				t
_	20	1.8		0.15	0.26	-0.82	Equal-area differentiation

ANALYSIS OF RATE DATA (cont.)

✤ The method of Initial Rates

- There are cases where reactions occur in which complications arise over time. For example a significant reverse reaction might occur. Further some reactions are very slow and the time required for the complete experiment might be prohibitive.
- Using data from the beginning stages of the experiment to determine the rate constant and order
- The differential method

Taking the logarithm of the negative of Eq. (*):

 $\log\left(-\frac{dC_{0}}{dt}\right) = \log k + n\log C_{0}$

Plot log(-dC0/dt) versus $log(C_o)$ should yield a straight line can be used to estimate k and n, the slope provides an estimate of the order, whereas the intercept provides an estimate logarithm

ANALYSIS OF RATE DATA (cont.)

The method of Half -lives

The half-lives of a reaction is the time it takes for the concentration to drop to one-half of its initial value. In other words.

 $C(t_{50}) = 0.5C_0$

If $C = C_0$ at t =0, then this equation (*) can be integrated by separation of variables to yield

Combining two equations above to give:

$$E_{50} = \frac{2^{n-1} - 1}{k(n-1)} \frac{1}{C_0^{n-1}}$$

 $t = \frac{1}{kC_0^{n-1}(n-1)} \left| \left(\frac{C_0}{C} \right)^{n-1} - 1 \right|$

Taking the logarithm of this equation provides a linear relationship $\log t_{50}$

$$\log_{50} = \log \frac{2^{n-1} - 1}{k(n-1)} + (1 - n)\log C_0$$

ANALYSIS OF RATE DATA (cont.))

The method of Half -lives (cont.)

For general case with response time t_{ϕ} , where ϕ is percent reduction:

$$=\frac{\left[\frac{100}{(100-\phi)}\right]^{n-1}-1}{k(n-1)}\frac{1}{C_0^{n-1}}$$

(***** *****

Co-funded by the Erasmus+ Programme of the European Union

The rates of most reaction in natural waters increase with temperature. A more rigorous quantification of the temperature dependence is provided by the Arhenius equation.

 $k(T_a) = Ae^{\frac{-E}{RT_a}} E$ R

a preexponential or frequency factor Activation energy (J.mole⁻¹) the gas constant(8.314 J.mole⁻¹.K⁻¹) absolute temperature (K).

 $\mathbf{k}(\mathbf{T}) = \mathbf{k}(20)\theta^{\mathrm{T}-20}$

Compare the reaction rate constant at two different temperatures

$$\frac{k(T_{a2})}{k(T_{a1})} = e^{\frac{E(T_{a2}-T_{a1})}{RT_{a2}T_{a1}}} \qquad T_{a1}.T_{a2} = const$$

$$\theta = e^{\frac{E}{RT_{a2}T_{a1}}}$$

$$\theta = e^{\frac{E}{RT_{a2}T_{a1}}}$$

Compare the reaction rate constant at 20°C:

23

TEMPERATURE EFFECTS

Co-funded by the Erasmus+ Programme of the European Union

Example 3: Evaluation of temperature dependency of reaction. A laboratory provides you with the flowing results for a reaction

 $T_1 = 4^{\circ}C$ $k_1 = 0.12 \text{ ng}ay^{-1}$

 $T_2 = 16^{\circ}C$ $k_2 = 0.20 \text{ ngày}^{-1}$

(a) Evaluate θ for this reaction

(b) Determine the rate at 20°C

Erasmus+ Programme of the European Union

Solution:

(a) Taking the logarithm and raise the results to power of 10 to give

 $logk(T_2) - logk(T_1)$ $T_2 - T_1$ $\theta = 10$

Substituting the data gives:

$$\theta = 10^{\frac{\log 0.12 - \log 0.20}{4 - 16}} = 1.0435$$

(b) The rate at 20°C

$$k(20) = 0.20 \times 1.0435^{20-16} = 0.237 \text{ (ngày)}$$

BÀI TẬP

 We design an experiment and determine the oxygen concentration as follows:

t(d)	0	2	5	10	20	30	40	50	60	70
C(mg/l)	10	8.4	6.5	4.4	2.3	1.6	1.3	1.2	1.1	1.1

Determine the order and the rate of the reaction?

--- THE END ----

