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REACTION TYPES

 Homogeneous reaction: involve a single phase, (that is,
liquid, gas, or solid)

 Heterogeneous reaction: involve more than one phase, with
reaction usually occurring at the surface between phase

 Irreversible reaction: These proceed in a single direction
and continue until the reactants are exhausted.

 Reversible reaction: can proceed in either direction,
depending on the relative concentration of the reactants and
the products.
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REACTION KINETICS

The law of mass action:

A + B  product
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β
B

α
A

A CkC
dt

dC
Rate of reaction:

Where:

k constant rate (temperature-dependent)

 Order with respect to reactant A

 Order with respect to reactant B

n =  +  reaction order

nkC
dt

dC


A single reactant:
C = the concentration of the single reactant 

n = The order(*)



ZERO-, FIRST AND SECOND – ORDER REACTIONS

Zero - order(n = 0)
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k
dt

dC
Equation (*): Where: k has units of ML-3T-1

If C = C0 at t =0, then this equation can be integrated by separation of 
varibales to yield:

ktCC 0 

• A constant rate of depletion per unit time

• Plot of concentration versus time yields a 
straight line



First - order(n = 1)
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Equation(*): where k has units of T-1

If C = C0 at t =0, then this equation can be integrated by separation of 
variables to yield: ln c – ln co = - kt

Taking the exponential of both sides gives:

• The concentrations decrease following exponential 
function

• The concentration curve asymptotically approaches 
zero with time

kC
dt

dC


kt
0eCC 

Taking te inverse logarithm base - e to base -10

tk'
0 01CC 

2.3025

k
'k where

ZERO-, FIRST AND SECOND – ORDER REACTIONS



ZERO-, FIRST AND SECOND – ORDER REACTIONS

Second - order(n = 2)
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Equation(*): where k has units of L3M-1T-1

If C = C0 at t =0, then this equation can be integrated by separation 
of variables to yield

• Plot of 1/c versus t should yield a straight line

2kC
dt

dC


kt
C

1

C

1

0



The above equation can also expressed in term of 
concentration as a function of time by inverting to gives:

tkC1

1
CC

0
0 





 n order (n1)
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Equation(*):

If C = C0 at t =0, then this equation can be integrated by separation of 
variables to yield

nkC
dt

dC


 kt1n
C

1

C

1
1n

0
1-n

 

• Plot of 1/Cn-1 versus t should yield a straight line

Solution for c:
    1n1/1n

0

0
tkC1n1

1
CC 



ZERO-, FIRST AND SECOND – ORDER REACTIONS



ANALYSIS OF RATE DATA

A simple approach is to measuring concentrations in each bottle
over time to develop a relationship between concentrations and time.
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t 0 1 2 3

c C0 C1 C2 C3



ANALYSIS OF RATE DATA

The integral method:

• Step 1: guessing n

• Step 2: Integrating equation (*) to obtain a function,C(t)

• Step 3: Graphical methods are then employes to determine
whether the model fits the data adequately
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Order Rate units Dependent y Independent x Intercept Slope

n=0
n=1
n=2
n #1

M(L3T)-1

T-1

L3(MT)-1

(L3M-1)n-1T-1

C
lnC
1/C
C1-n

t
t
t
t

C0

lnC0

1/C0

C0
1-n

-K
-K
K
(n-1)K



ANALYSIS OF RATE DATA

Example 1: Employ the integral method to determine whether the following
data is zero-, first, second – order

If any of these models seem to hold, evaluate k and co
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t (day) 0 1 3 5 10 15 20
C (mg/l) 12 10.7 9 7.1 4.6 2.5 1.8
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t 0 1 3 5 10 15 20
C 12 10.7 9 7.1 4.6 2.5 1.8
ln C 2.48 2.37 2.20 1.96 1.53 0.92 0.59
1/C 0.08 0.09 0.11 0.14 0.22 0.40 0.56

Plots to evaluate whether this 
reaction is (a) zero-order, (b) first 

– order, (c) second – order

Solution:

To determine whether the following data is zero-, first, second –
order, we will evaluate for each order.



The best-fit line for this case as below:

Therefore the estimates of two model parameter are:

k = 0.0972 day-1

C0 = e2.47 = 11.8 mg/l

Thus the resulting model is
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0.0972t-2.47 lnC 

0.0972t11.8eC 

which    R2 = 0.995



ANALYSIS OF RATE DATA (cont.)

The differential Method

Taking the logarithmic of both sides of Equation(*), to give:
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nlogClogk
dt

dC
log 








Plot of log (-dC/dt) versus log C should yield
a straight line with a slope of n and an
intercept of log k

log

log
CA

slope = n

Numerical differentiation: Finite -
Difference approximations  to estimate dC/dt. 

• Centered Differentiation

1i1i

1i1ii

tt

CC

Δt

ΔC

dt

dC












ANALYSIS OF RATE DATA (cont.)

The differential Method (cont.)
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t t0 t1 t2 t3 t4 t5
c C0 C1 C2 C3 C4 C5

 Equal-area differentiation

t C t C C/t dC/dt
t1 C1 (dC/dt)1

t2 – t1 C2 – C1 (C/t)2

t2 C2 (dC/dt)2

t3 – t2 C3 – C2 (C/t)3

t3 C3 (dC/dt)3

t4 – t3 C4 – C3 (C/t)4

t4 C4 (dC/dt)4

t5 – t4 C5 – C4 (C/t)5

t5 C5 (dC/dt)5

Drawing smooth curve  that best 

approximates the area under the 

histogram, try to balance out the histogram 

areas above and below the drawn curve. 

Then the derivative estimates at the data 

points can be read directly from the curve. 



ANALYSIS OF RATE DATA (cont.)

The differential Method (cont.)
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t t0 t1 t2 t3 t4 t5
c C0 C1 C2 C3 C4 C5

 Numerical method

t

CCC

dt

dC

t

CC

dt

dC

t

CC

dt

dC

t

CC

dt

dC

t

CC

dt

dC

t

CCC

dt

dC

t

t

t

t

t

t



































































2

34

2

2

2

2

2

43

543

5

35

4

24

3

13

2

02

1

210

0

First point

Middle points

End point



ANALYSIS OF RATE DATA (cont.)

Example 2: Use the differential method to evaluate the order and the

constant for the data from Example 1. Use equal-area differentiation to

smooth the derivative estimates
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t (d) 0 1 3 5 10 15 20
C (mg/l) 12 10.7 9 7.1 4.6 2.5 1.8



Solution:

Determine derivative estimate from time series of concentration
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t
(day)

C
(mg/l)

-C/t -dC/dt logC log(-dC/dt)
mg/l/d

0 12.0 1.25 1.08 0.1
1.3

1 10.7 1.1 1.03 0.04
0.85

3 9.0 0.9 0.95 -0.05
0.95

5 7.1 0.72 0.85 -0.14
0.50

10 4.6 0.45 0.66 -0.35
0.42

15 2.5 0.27 0.40 -0.57
0.14

20 1.8 0.15 0.26 -0.82 Equal-area differentiation



The best-fit line for this case is

Therefore the estimates of two model parameter are:

• n = 1.062 (First - order)

• k = 10-1.049 = 0.089/day

Thus the differential approach suggest that a first – order model is a valid 
approximately
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với R2 = 0.9921logC062.1049.1-
dt

dC
log 








Plot log (-dC/dt) versus log (C)



ANALYSIS OF RATE DATA (cont.)

The method of Initial Rates

• There are cases where reactions occur in which complications
arise over time. For example a significant reverse reaction might
occur. Further some reactions are very slow and the time required
for the complete experiment might be prohibitive.

• Using data from the beginning stages of the experiment to
determine the rate constant and order

• The differential method

Taking the logarithm of the negative of Eq. (*):
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0
0 nlogClogk

dt

dC
log 






 

Plot log(-dC0/dt) versus log (Co) should yield a straight line can be
used to estimate k and n, the slope provides an estimate of the order,
whereas the intercept provides an estimate logarithm



ANALYSIS OF RATE DATA (cont.)

The method of Half -lives

The half-lives of a reaction is the time it takes for the concentration to
drop to one-half of its initial value. In other words.
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050 0.5C)C(t 

If C = C0 at t =0, then this equation (*) 
can be integrated by separation of 
variables to yield


























 1
C

C

1)(nkC

1
t

1n

0
1n

0

Combining two equations above to give: 1
0

1-n

50

1

1)k(n

12
t 




nC

Taking the logarithm of this equation
provides a linear relationship

    0

1-n

50 logCn-1
1nk

12
loglogt 








ANALYSIS OF RATE DATA (cont.))

The method of Half -lives (cont.)

For general case with response time t, where  is percent reduction:
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  
1n

0

1n

φ C

1

1)k(n

1φ100100/
t 










TEMPERATURE EFFECTS

The rates of most reaction in natural waters increase with temperature. A 
more rigorous quantification of the temperature dependence is provided by 
the Arhenius equation.
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aRT

E

a Ae)k(T



A a preexponential or frequency factor
E Activation energy (J.mole-1)
R the gas constant(8.314 J.mole-1.K-1)
Ta absolute temperature (K).

Compare the reaction rate constant at two different temperatures

a1a2

a1a2

TRT

)T-E(T

a1

a2 e
)k(T

)k(T


Ta1.Ta2 = const

a1a2TRT

E

eθ 

a1a2 TT

a1

a2 θ
)k(T

)k(T 

20-Tk(20)θk(T) Compare the reaction rate constant at 20ºC:



TEMPERATURE EFFECTS

Example 3: Evaluation of temperature dependency of reaction. A 
laboratory provides you with the flowing results for a reaction

T1 = 4ºC k1 = 0.12 ngày-1

T2 = 16ºC  k2 = 0.20 ngày-1

(a) Evaluate  for this reaction

(b) Determine the rate at  20ºC
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Solution:

(a) Taking the logarithm and raise the results to power of 10 to give

Substituting the data gives:

(b) The rate at  20ºC
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12

12

TT

)logk(T)logk(T

10θ 




0435.110θ 164

log0.20log0.12

 


(ngày) 0.2371.04350.20k(20) 1620  



BÀI TẬP
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t(d) 0       2        5       10        20      30       40      50      60       70

C(mg/l) 10     8.4    6.5      4.4       2.3     1.6      1.3     1.2      1.1      1.1

1. We design an experiment and determine the oxygen concentration 

as follows:

Determine the order and the rate of the reaction?



--- THE END ---


