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— FUNDAMENTAL EQUATIONS DESCRIBING CURRENTS AND BOUNDARY CONDITIONS

The state of the liquid is completely determined, if at each point of the liquid at any

time completely identified:
Pressure P(X,y,z,t);
Density p(Xx,y,z,t),

Velocity with components u(x,y,z,t), v(Xx, v, z,t), w(X,y,z,t).
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= Equations of Motion for Perfect and Viscous Fqu:l-

In general, a particle is being acted upon by the following forces
v Inertia forces (-y = -dV/dt for a unit of mass);
v External forces F (for a unit of mass and with components X,Y,Z)

v" Mutual friction force (pressure, viscous): R.
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Equations of Motion for Perfect and Viscous Fluids

According to the Dalambe principle of the equilibrium of the dx dy dz water particle under the effect of those
three forces, we have:

pdx-dy-dz-i—‘t/=p-F-dxdydz+R (5.1)
Projecting the equation (1.25) onto the coordinate axes and dividing by p (for non-compressible liquids), we have:

92 92 2 _ o N
du _ y 10P o where A = —— + 5y TV const is a kinetic coefficient, for the
a pox s . du 1 0P
dv 10P perfect liquid: v = 0; = X — =
Z =YV, turr (5.2) p
w o dv 1 0P
dw 10P dv _y, _10P
—=Z—-——-—+ulw " e
dt p 0z - (5.3)

dt — p 07z

Where: T IS the time differential of a definite liquid particle, and the liquid particle's velovcity is a function of both
time and space, so we have:
du Jdu du du du

a=a+u&+va—y+W£
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= Equations of Motion for Perfect and Viscous Fluids

Therefore the motion equation has form:

ou ou ou ou 10P
a—+ua+v5+waZ—X pax+ul7u

ov ov ov ov 1 0P

T ruE v wE =y == 4l

ot TUn TV, T W, oy UV (5.4)
ow ow ow ow 1 0P
E-FUE-l—Va—y-l-WE—Z—paZ-FUVW

Equation (5.4) is the Navie-St. equation for the viscous fluids. For the ideal liquid we have:
v/u=uvlv=uvlw=20

The above equations are nonlinear. We're going to linearize them if we ignore space acceleration.

Movement is considered stable (or stop) if the velocity at any given time does not depend on the time

or local acceleration:

au_av_aw_
ot ot ot
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= CONTINUITY EQUATION

Considering the continuity equation of the fluid, i.e. we consider the continuous properties of that
fluid. Assuming there is a fluid volume factor 6x dy 6z, consider the volume of liquid entering and

exiting this volume during the period 6t.
In the direction of the Ox axis, the mass of fluid entering that volume: (pu),dtdydz
and the mass of fluid that comes out of volume is: (pu) x4 5x0tOyOZ

So, after the period ot §x §y 6z la: Ox axis movement will increase the amount of fluid in the volume

factor a(p - )
(pu)0z6yot — (pu)y4sx - OZOYOt = — I 0xX0yozot
Similarly, in the direction of the Oy axis and the Oz axis we also have:
a(p. a(p -
_90V) 5 oyszst — 2L sxsyeust

dy 0z
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= CONTINUITY EQUATION

According to the law of mass conservation, the total volume of liquids entering and exiting volume

ox Oy 6z must be by changing the volume of fluid during that time.:

dp dp
p+ Eat 0X0yoz — pdxdydz = E6t5x5y6z

d(pu) d(pv) d(pw)
= T 0X0yozt — ay 0x0y0zot — o 0x0yd0zot
dp d(pu) d(pv) d(pw)
ot T Tox oy T oz 0
Or 2 +div(p.V) = 0 (5.5)
The equation (5.5) is the continuity equation of compressed liquid. In practical calculations it is
o 9]
common to view liquids as uncompressed p = const: a—/t) =0
L : : , _ : _Ou  Jdv  Ow _ )
Continuity equation is constantly in form: divlV = T 3y t-- = 0 M
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= SALT CONSERVATION EQUATION

Consider the amount of salt that goes beyond the limits of a volume factor 6x oy 6z follow the Ox axis at a time

of ration x during the period &t la (S.p.u), dydzét, The amount of salt passing through the opposite side is
(S.p.U),.5,0y026t.

Therefore, the movement in the direction of the Ox axis has the excess salt.. — %&c&yz&

__0(p:w-S)

In the direction of the axes Oy and Oz also: a(;;-;.S) ox0yozét > ox0yozdt
Order the initial amount of salt in volume &x 8y 6z la pS.6x &y 6z, after &t the amount of salt in the volume factor
: d(p-S
s: (p S+ (pat )&) 5852
0 0 0
According to the law of conservation: ~ +—-(p-u-S) + 3y (p-v-S)+— (P -w-S5)=0 (5.7)
When using continuity equations (1.29) we have: @ + ua—i + v + gf 0 (5.8)
_ aS N N
When S(x,y,z) = const, so P = 0, therefore: u— + Vo tw— = =0 (5.9)
The heat conservation equation is recelved in the same way..
oT oT aT
E +u a + v + aZ =0 (5.10)
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Seawater is a compressed liquid, i.e. its density changes. The dependence of the specific volume a and the

density of the water on the state parameters: T temperature, S salinity and P pressure are indicated by the state

equation. The general form of the state equation is as follows: p=p(T,5P) (5.11)
a = a(T,S, P) (5.12)
Determines the specific volume change of seawater as a function of state parameters:
da Jda da
da = (6_T)SP dT + (E)Tp ds + (E)Ts dp. (5.13)

If you divide all the components of (1.37) by a particular unit volume q, the pre-fractions of temperature, salt and
pressure will be:

1 (O«
- Thermal expansion coefficient: Kr = ao (ﬁ)s_p (5.14)
- Salt compression coefficient: K 1 (Oa
T o \05 /1 p

- Compression resistance coefficient of density:
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<> SEAWATER STATE EQUATION ol
|

Then the expression (5.14) is often called the equation of state in the differential form of seawater

de _ KdT — K.dS — KpdP (5.15)

240
Currents theories often use simpler systems. The simplest of these is the Businesq approximation (the linear

dependence of density on temperature): pﬂ =C;+C, Tl (5.16)
0 0

and the linear dependence of density on temperature and salt (Linheikin, Robinson and Stommel, Bryan and
Kox):
——C3+C4—+CSS (5.17)
0

Po
Where T is temperature, S is salt, p, is the average density of seawater; T, and S, are the average values of

temperature and salt. When atmospheric pressure is equal 1 at, T,=17,5°C, S, = 35Y%,,

Po = 1,02541 g/cm?3 thi cac hé sb ¢o gia tri: C, = 1,00266; C, = C, = -0,00317; C, = 0,97529; C; = 0,02737.

E_C6+C7T_+C8_+C

More precise dependence of density on temperature and salt:
with values T,, S,, p, and atmospheric pressure as above C4 = 0,97529, C.,= - 0,00006, C4 =

0,0014.
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) SEAWATER STATE EQUATION

—_—

If the compression of the liquid, i.e. the variation of density and the pressure ratio is taken into account, there

are: T\?
’C6+C7 +C85_+C9( ) +C10T_OS_0] [1"‘

P-P,

Cua| (5.19)

Where P, is pressure is equal to 1 at., C;, is a constant quantity and a compression-resistant coefficient, can

If you view the pressure as proportional to the depth, the equation (5.19) has:
T S T\?
= [(:6 +Cr+ Cog + Co (T—O) + clo——] |1+ clz—] (5.20)

And simpler dependency(5.20) is: P _
Po

Where Z0 = 1km, it is possible to take C12 = 0.00428, C13 = 0.0043; (1.44) and (1.45) by Linheikin, Mamaey,

T S T\? TS
C6+C7_+C8S_+C9 +C10__
0

y4
Cia— 5.21
T, T, TS5, TGz, D

Vaxilev. Equations (5.19) and (5.20), although not allowing for accurate calculation of density, have been used to .

solve most of the problems of sea current theory that involve examining the nonlinear interactions e fi

flow velocity, density, temperature, and salt level.
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The system of moving equations, continuous, state and preservation of salt heat is closed. But to get accurate
results from solving those equations is impossible because the movement of the real liquid always has a tangled
feature. Therefore, we must consider the tangled characteristics in these equations. Performs real motion in the
form of medium motion and sublimation motion:

u=u+u;v=v+viw=w+w

P=P+P;T=T+T;s=5+s;p=p+p

Reynolds' 5 conditions for any function: 1= G1+9'1; J=G>+9 7 ;
d1+d2 = a1 +qz (5.22) 0, =q (5.27)
aq; = aq, khia = const (5.23) q; =0 (5.28)
d1°dz2 = d1° Q2 (5.29)
a = a, khia = const (5.24) —l
q;-q; =0 (5.30)
dq, 0q; 9q, O0q; (5.25) When considering the velocity field we have the average value ,
Ox; Ox; Ot ot ’ | of speed pulses over a certain period of time withbe z 3

— 1 t+T
G4 =01- a2 (5.26) u'=_J, udt=0 (531)
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MOTION EQUATION IN TURBULENT MOTION
At any time and points, the speed components must satisfy the Navie-Stoc equation, so according to the Ox axis we have:

T @) (Z+) + @+ v (Z—3+%—“y) o+ w) (E+ 2 =X—%Z—E—%aa—l;’+uAﬁ+uAu’ (5.32)
According to the Reynolds systems and the consequences we have: 7 _ . %u’ = 0 aali_’ ) (5.33)
X
When we take the equation average (5.32) over the T period, we have:
%+ﬁg+vg—3+wg+u’%—‘:+v’%—‘;+w'%=X—%g—§+uAﬁ (5.34)
Hay: %+ﬁg+\73—§+v—v%=X—%g—i—vAﬁ—T—sz—T=X—%Z—E+VH—I;,: —"";'y”’—a‘;';”’+u'i,—‘;'+
u’ aa_\;’ + u’ a;:

When using continuous equations for medium and pulse motion and viewing the liquid as uncompressed, we
ou ov oJdw oJu’ dv' ow'

have: +—+ +—+ =0
dx dy 0z Jdx dy 0z
_ ou , _90u  _ou 6 _odu_ ., 19P __ . Ju? auv' aqu'w
Therefore: ot + u ” -+ Vay +w 5 = X o VAU ™ 2 >
10P 1 ou’? ou’'v’ ou’w’
Ko 3 oy B O 53
00X ' 0 Pox P oy P o (
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MOTION EQUATION IN TURBULENT MOTION

Thus the Navie-Stoc equation with tangled motion has been taken on average different from the

previous equation of having additional nonlinear components.:
_ d(u’2) _ a(u’'v’) _ d(u’'w’)

theo truc Ox;

0X ay 0z
o(u’'vl) oaw'?) o'w') _
= o - theo truc Oy;

du'w’)  a@'w) a(w'?)
dx ady 0z

theo truc Oz;
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Motion Equation In Turbulent Motion

Cmace TURBULENT MOTION, REYNOLDS STRESS

s

Similar to the viscous case of the element viscosity we have:

> au
—pu =28&=Txx
av Jdu
—pu'v' = pv'u’ = ¢ % a_y = Tyx = Tyy
Ju , ow
—pu'w’ = pw'u’ —e(alzl+a—w) = T, = Txy (5.36)
= av Véi € =up
—pVv _ZEa—y_Tyy
— — adv 0w
—pV'W = pw'v' =¢ E-I_a_y = Tzy = Tyz
> ow
—PW =2€E=TZZ

It is the component of reynolds tenxo or tangled tenxo of tangled motion:

Txx Tyx Tzx
Txy Tlyy Tzy

Txz Tyz Tzz
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Motion equation in turbulent motion

: : d :
If you consider flat movement, the movement is constant. d—ltl = 0 have a speed (u) parallel to the Ox axis and
depend only on z, there are:
0—x 16§+1 d’u  du'w’
B pox 0 ‘922 P4z
0—x 1aF+1d da _, |, < 37
— AT o0x Tadz\"az PNV (5.37)

Similar to element friction, to find the turbulent viscosity coefficient p we write the du du —
pressure in the form of: F=pum=eg —puw
Because in turbulent motion. & £ very small compared to pu’w’ So we can skip and watch closely: g = @ — —puwl

dz lu“ dZ p
Therefore L= —p lgdw) (5.38)
dx

It's a formula for calculating a turbulent viscosity coefficient. Theo Businesq the coefficient y It depends -,

mainly on the intensity of the disorder. The turbulent viscosity coefficient has a range from 101 -
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Motion equation in turbulent motion

The assertion of u'v', u'w', v'w' in the other mean line does not allow to say that there must be some

correlation between the ascension u', v', w'. When there is no correlation, u'v’ is Zero. The correlation

coefficient is calculated as follows: K=V (5.39)

Jafve

It has been determined that when the density is highly stable, the slime coefficient is small. So when the

water mass has great stability, the Reynolds stress contains the w' component that must be smaller than reynolds

stress without w', so the horizontal and vertical viscosity coefficients are different.

ot oW : _ . _ ou o
Tyx = ZHV& = —pu'? Ty = Z,uhg = —pw'? Txz = Tzx = Hh + py puv
ov ul'2 dv  ou —7 — — 0_\7 @ S o
Tyy = Zyva—y = —pV’Z Txy = TyX = Uy <& + a_y> — _pulvl Txy = Tyx = Uy <6x + ay) = —puv (540)

- Uy, the turbulent viscosity coefficient of the horizontal speed gradient

- [, the turbulent viscosity coefficient of the vertical speed gradient.
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Motion equation in turbulent motion
If the pressure pressures act on a fluid volume factor. 6x, 8y, 6z, with hypothesis uy va u, is constant and

Cmace TURBULENT MOTION, REYNOLDS STRESS

—_—

considering the continuity equation for average motion, there are:

0Ty OTygx 0T,y
O0X0yOzZ I + 3y + P

The average motion equation is rewritten as:

5% 0%1U 0%
= 0x0ydz| uh -7 + Hn gy tiho7

da_aa+ aa+_aa+_aa_x 16ﬁ+uv aza+02ﬁ Uy, 0%

dt ot ' ox ”ay e pox p \0x? 0y*) p 0z

dviv ov du 0v 0 10p u, (0°0 0%v\ u,0°%v

- = - - — =Y —— e

dt at+”ax+”ax+waz p0y+p<0x2+0y2 +p022

dw ow _ow _dw _ ow 10p u, (0*w 0%?w\ u,0*w (5.41)
= S S —_— =X —— —_—

dt 6t+u6‘x+v6y+waz paz+p<0x2+ay2 +p622

Coefficients pyu, determined from Reynolds stress. Prandtl gives Reynolds stress formula as follows:

du

dul du
dz

dz

!/ !/

Ty = —p W'W (5.42) L is a turbulent road and p = p#? % (5.43)

Thus the coefficient of y proportional to the cube of the turbulent distance.
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Salt Conservation Equation in turbulent motion

a — / a — / a — / a - /
We have: [a—t+(u+u)&+(v+v)a—y+(w+w)a—t](S+S)=O (5.44)
if the liquid to be uncompressed,; 2% 42X 4 W _
q P . 0x oy 9z

And take the average equation (5.44) we have: (% + U + 63+ )S + —u 'S’ + v’S’ + %vTS’ =0 (5.45)

In the concept of a turbulent diffusion coefficient: Ax, Ay, Az of salt in the directions Ox, Oy, Oz. These

.. : : Ay S Ay 39S —— A, 0S
coefficients are calculated according to expressions: u's’ = ——=%—=;v's' = —2X—=:w's’ = —~2—(5.46 )
p 0x p 0y p 0z
125450y S o O (A0S) | 0 (Ay0S) D (4 05)
Hence, . 22+ &5 + 02+ W ax(pax o (22) + 5 (5 (5.47)

(5 47) is the equation that diffuses salt in the sea. Similarly, we also found a thermal diffusion equation.

T gl gl T2 2 (AnedT) | 0 (AnyOT) | 0 (A o1
+u + U +WaZ 6x(p6x)+6y(p6y)+az(paz) (5.48)
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BOUNDARY CONDITIONS

Equations of motion are differential equations, in order to solve those equations, there must
be boundary conditions or limit conditions. Boundary conditions are generally divided into
three categories:

1. Dynamic boundary conditions.

2. Kinetic boundary conditions.

3. Thermal and salt conditions.
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Dynamic boundary conditions

These are conditions that indicate the continuity of the stressor at the boundary between the atmosphere and the

ocean.

When z = - { (x,y,t), That is, on the free side of the ocean.:

Where Pa is the atmospheric pressure P = P, (5.49)
9 9
.uha_lzl =~ Tx .uha_: = 1y (5.50)

where as 1X, Ty is a wind tangential stress on the sea surface.
Because of the lowering of ocean levels C It is usually very small compared to the depth of the sea, so these

conditions are sometimes given on the non-noisy side of the sea.: z = 0.
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Kinetic boundary conditions
This condition indicates impermealbility to liquids on the free side:

z=-C(x,vY, 1), taiday z = H (x,y) and in boundaries.

- __ 4 __(ag_ 4 4
-Khiz=-((x, y, t) W——dt— (dt+udx+vdy) (5.51)
- Khi z = H(x,y): Kinetic boundary condition can take two forms.:
a) W= uaa—z + vg—I; frictionless sliding conditions (5.52)
b) u =v = 0,w = 0 no-slip condition (5.53)

The choice of condition a) or b) is dependent on friction with the bottom. Sliding conditions do not take into

account the bottom border layer.

- At the solid boundary: u = v = 0 adhesive and impermeable boundary conditions (5.54)

- At the liquid boundary, give before the distribution of the speed vector: Vi =V .(x,y,z) (5.55)
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Thermal and salt conditions
These conditions denote the effect of the transport of thermal and salt through the dividing sides.

On the free side of the ocean.: Khi z = - {(x,y,t) the general form of these conditions is:

yT+62 =Gy yS+62=Gs  (556)

if ® = 0 The condition is for the values of the function itself., and if y = 0 then for the gradient of that function.

- At the bottom and at the lateral solid boundaries, for conditions without the flow of thermal and salt according

to the route method with the margin: g—: = % =0 (5.57)

- At the side fluids boundaries: % = GTH;% = Gg, (5.58)

The initial conditions reflect the thermal state of the ocean at the initial time t = 0. It is usually required to give

advance the field of ocean features at the initial time:

0= u®,y=v©® w=w® p=p©® T=TO =50 5= O
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Classification of non-stop processes in the ocean and some apr|mat|ons
applied to currents research

When studying the ocean, there are seeing the phenomenon of fluctuations over time of marine
fields such as the velocity field., temperature field T° salt degree field SY%,, density p...,
they make up a variety of physical processes in the ocean. To classify these processes in time and
space, similar to the classification of changes in climate fields, one derives from the spectrum of the

cycle, which divides them into seven time periods.




Co-funded by the
Erasmus+ Programme
of the European Union

g CLASSIFICATION OF NON-STOP PROCESSES

Small-scale phenomena: Cycles from a few seconds to tens of minutes.
Medium-scale phenomena: Cycles from a few hours to daily.

Syn scale change: Cycles a few days to months
Season fluctuations: Five-year cycles and larger.

SN N =

Changes between years: l.e. changes consistent with the state of large seas and of the

entire atmosphere from year to year.

6. Changes in the century: Cycles of several decades. It is the study of the connection

between the ocean and changes in the century of climate. \
7. Changes between centuries: Cycles of hundreds of years and larger. It is the study of the

connection between the ocean and the fluctuations between the centuries of climate.
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= SOME APPROXIMATIONS APPLIED TO CURRENTS RESEA {

For average movements, the following approximations are correct.:

1. QUASI-STATIC APPROXIMATION

2. APPROX. BUSINESQ

3. APPROXIMATIONS TO THE CORIOLIS FORCE

4. GEOLOCATION SYSTE
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= QUASI-STATIC APPROXIMATION

The studies of medium and large-scale processes in the ocean (vertical scale H= 100 m + 1 km and

horizontal scale (L = 100 + 1000 km) show that vertical velocity is much smaller than horizontal

velocity. Consider the order of quantity in the conservation of mass equation (the continuity equation):
W=H.U/L suyraW=10"3U (5.60)

Where W, U are the characteristic quantities of the vertical and horizontal speeds.

Since the vertical velocity in the ocean is very small, it is possible to write the equation of vertical

motion as 3—5 =g-p (5.61)

like the static equation.
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> APPROX. BUSINESQ

We know that the density of water in the ocean changes very little : %” ~ 1073(6p is the

density anomaly), so density p can be replaced by p, (average density), then the

equation for conservation of mass is written as: divV =0 (5.62)

(incompressible condition of seawater).
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~ APPROXIMATIONS TO THE CORIOLIS FORCI':I .

When studying medium- and large-scale motion in the ocean as known /W/ <</U/, the term
with coefficient 2wwcosg in the component of the Coriolis force along the Ox axis can be

ignored. But it may be necessary to account for this term in the narrow band at the equator.




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

