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FUNDAMENTAL EQUATIONS DESCRIBING CURRENTS AND BOUNDARY CONDITIONS

The state of the liquid is completely determined, if at each point of the liquid at any

time completely identified:

Pressure P(x,y,z,t);

Density ρ(x,y,z,t),

Velocity with components u(x,y,z,t), v(x, y, z,t), w(x,y,z,t).



Equations of Motion for Perfect and Viscous Fluids

In general, a particle is being acted upon by the following forces 

✓ Inertia forces (-γ = -dV/dt for a unit of mass);

✓ External forces F (for a unit of mass and with components X,Y,Z)

✓ Mutual friction force (pressure, viscous): R.



According to the Dalambe principle of the equilibrium of the dx dy dz water particle under the effect of those 

three forces, we have:

Projecting the equation (1.25) onto the coordinate axes and dividing by ρ (for non-compressible liquids), we have: 

𝑑𝑢

𝑑𝑡
= 𝑋 −

1

𝜌

𝜕𝑃

𝜕𝑥
+ υ𝛻𝑢

𝑑𝑣

𝑑𝑡
= 𝑌 −

1

𝜌

𝜕𝑃

𝜕𝑦
+ υ𝛻𝑣

𝑑𝑤

𝑑𝑡
= 𝑍 −

1

𝜌

𝜕𝑃

𝜕𝑧
+ υ𝛻𝑤

(5.2)

Equations of Motion for Perfect and Viscous Fluids

where Δ =
𝜕2

𝜕x2
+

𝜕2

𝜕y2
+

𝜕2

𝜕z2
; υ = const is a kinetic coefficient, for the 

perfect liquid: 𝑣 = 0;  
du

dt
= X −

1

𝜌

𝜕P

𝜕x

d𝑣

dt
= Y −

1

𝜌

𝜕P

𝜕y

dw

dt
= Z −

1

𝜌

𝜕P

𝜕z

(5.3)

𝜌dx ⋅ dy ⋅ dz ⋅
dV

dt
= 𝜌 ⋅ F ⋅ dxdydz + R (5.1)

Where: 
d

dt
is the time differential of a definite liquid particle, and the liquid particle's velovcity is a function of both 

time and space, so we have:

du

dt
=
𝜕u

𝜕t
+ u

𝜕u

𝜕x
+ v

𝜕u

𝜕y
+w

𝜕u

𝜕z

is the time differential of a definite liquid particle, and the liquid particle's speed is a function of both time and space,



Therefore the motion equation has form:

Equation (5.4) is the Navie-St. equation for the viscous fluids. For the ideal liquid we have:

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+𝑤

𝜕𝑢

𝜕𝑧
= 𝑋 −

1

𝜌

𝜕𝑃

𝜕𝑥
+ υ𝛻𝑢

𝜕v

𝜕t
+ u

𝜕v

𝜕x
+ v

𝜕v

𝜕y
+w

𝜕v

𝜕z
= Y −

1

𝜌

𝜕P

𝜕y
+ υ𝛻v

𝜕w

𝜕t
+ u

𝜕w

𝜕x
+ v

𝜕w

𝜕y
+w

𝜕w

𝜕z
= Z −

1

𝜌

𝜕P

𝜕z
+ υ 𝛻w

(5.4)

υ𝛻u = υ𝛻v = υ𝛻w = 0

The above equations are nonlinear. We're going to linearize them if we ignore space acceleration.

Movement is considered stable (or stop) if the velocity at any given time does not depend on the time

or local acceleration:

𝜕u

𝜕t
=
𝜕v

𝜕t
=
𝜕w

𝜕t
= 0

Equations of Motion for Perfect and Viscous Fluids



CONTINUITY EQUATION

Considering the continuity equation of the fluid, i.e. we consider the continuous properties of that

fluid. Assuming there is a fluid volume factor 𝛿x 𝛿y 𝛿z, consider the volume of liquid entering and

exiting this volume during the period 𝛿t.

In the direction of the Ox axis, the mass of fluid entering that volume: (𝜌u)𝑥𝛿t𝛿y𝛿z

and the mass of fluid that comes out of volume is: (𝜌u)x+𝛿x𝛿t𝛿y𝛿z

So, after the period δt 𝛿x 𝛿y 𝛿z là: Ox axis movement will increase the amount of fluid in the volume

factor

(𝜌u)x𝛿z𝛿y𝛿t − (𝜌u)x+𝛿x ⋅ 𝛿z𝛿y𝛿t = −
𝜕(𝜌 ⋅ u)

𝜕x
𝛿x𝛿y𝛿z𝛿t

Similarly, in the direction of the Oy axis and the Oz axis we also have:

−
)𝜕(𝜌. v

𝜕y
𝛿x𝛿y𝛿z𝛿t;−

)𝜕(𝜌 ⋅ w

𝜕z
𝛿x𝛿y𝛿z𝛿t



CONTINUITY EQUATION

According to the law of mass conservation, the total volume of liquids entering and exiting volume

δx δy δz must be by changing the volume of fluid during that time.:

𝜌 +
𝜕𝜌

𝜕t
𝜕t 𝛿x𝛿y𝛿z − 𝜌𝛿x𝛿y𝛿z =

𝜕𝜌

𝜕t
𝛿t𝛿x𝛿y𝛿z

= −
𝜕 𝜌u

𝜕x
𝛿x𝛿y𝛿zt −

𝜕 𝜌v

𝜕y
𝛿x𝛿y𝛿z𝛿t −

𝜕 𝜌w

𝜕z
𝛿x𝛿y𝛿z𝛿t

𝜕𝜌

𝜕t
+
𝜕 𝜌u

𝜕x
+
𝜕 𝜌v

𝜕y
+
𝜕 𝜌w

𝜕z
= 0

Or
𝜕𝜌

𝜕t
+ div(𝜌. V) = 0 (5.5)

The equation (5.5) is the continuity equation of compressed liquid. In practical calculations it is

common to view liquids as uncompressed ρ = const:

Continuity equation is constantly in form:

𝜕𝜌

𝜕t
= 0

div𝑉 =
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 (5.6)



SALT CONSERVATION EQUATION

Consider the amount of salt that goes beyond the limits of a volume factor δx δy δz follow the Ox axis at a time

of ration x during the period δt là (S.ρ.u)x δyδzδt, The amount of salt passing through the opposite side is

(S.ρ.u)x+δxδyδzδt.

Therefore, the movement in the direction of the Ox axis has the excess salt.: −
𝜕(𝜌⋅𝑢.𝑆)

𝜕𝑥
𝛿𝑥𝛿𝑦𝑧𝛿𝑡

In the direction of the axes Oy and Oz also:
𝜕 𝜌⋅u.S

𝜕y
𝛿x𝛿y𝛿z𝛿t ; −

)𝜕(𝜌⋅w⋅S

𝜕z
𝛿x𝛿y𝛿z𝛿t

Order the initial amount of salt in volume δx δy δz là ρS.δx δy δz, after δt the amount of salt in the volume factor

is:

According to the law of conservation:  

𝜌 ⋅ S +
)𝜕(𝜌 ⋅ S

𝜕t
𝛿t 𝛿x𝛿y𝛿z

+
𝜕

𝜕t
(𝜌 ⋅ u ⋅ S) +

𝜕

𝜕y
(𝜌 ⋅ v ⋅ S) +

𝜕

𝜕Z
(𝜌 ⋅ w ⋅ S) = 0 (5.7)

When using continuity equations (1.29) we have:
𝜕S

𝜕t
+ u

𝜕S

𝜕x
+ v

𝜕S

𝜕y
+w

𝜕S

𝜕t
= 0 (5.8)

When S(x,y,z) = const , so
𝜕S

𝜕t
= 0, therefore: u

𝜕S

𝜕x
+ v

𝜕S

𝜕y
+w

𝜕S

𝜕z
= 0 (5.9)

The heat conservation equation is received in the same way.:
𝝏𝑻

𝝏𝒕
+ 𝐮

𝝏𝑻

𝝏𝒙
+ 𝐯

𝝏𝑻

𝝏𝒚
+𝐰

𝝏𝑻

𝝏𝒛
= 𝟎 (5.10)



SEAWATER STATE EQUATION

Seawater is a compressed liquid, i.e. its density changes. The dependence of the specific volume α and the

density of the water on the state parameters: T temperature, S salinity and P pressure are indicated by the state

equation. The general form of the state equation is as follows: 𝜌 = 𝜌(T, S, P) (5.11)

𝛼 = 𝛼(T, S, P) (5.12)

Determines the specific volume change of seawater as a function of state parameters:

d𝛼 =
𝜕𝛼

𝜕T SP
dT +

𝜕𝛼

𝜕S TP
dS +

𝜕𝛼

𝜕P TS
dP. (5.13)

If you divide all the components of (1.37) by a particular unit volume α0 the pre-fractions of temperature, salt and 

pressure will be:

- Thermal expansion coefficient:

- Salt compression coefficient: 

- Compression resistance coefficient of density: 

KT =
1

𝛼0

𝜕𝛼

𝜕T s.P
(5.14)

Ks = −
1

𝛼0

𝜕𝛼

𝜕S
T.P

Kp = −
1

𝛼o

𝜕𝛼

𝜕P
T.S



SEAWATER STATE EQUATION

Then the expression (5.14) is often called the equation of state in the differential form of seawater

and the linear dependence of density on temperature and salt (Linheikin, Robinson and Stommel, Bryan and

Kox):

𝜌

𝜌0
= C3 + C4

T

T0
+ C5

S

S0
. (5.17)

d𝛼

𝛼0
= KTdT − KsdS − KPdP (5.15)

Currents theories often use simpler systems. The simplest of these is the Businesq approximation (the linear

dependence of density on temperature):
𝜌

𝜌0
= C1 + C2

T

T0
(5.16)

Where T is temperature, S is salt, ρ0 is the average density of seawater; T0 and S0 are the average values of

temperature and salt. When atmospheric pressure is equal 1 at, T0=17,50C, S0 = 350/00,

ρ0 = 1,02541 g/cm3 thì các hệ số có giá trị: C1 = 1,00266; C2 = C4 = -0,00317; C3 = 0,97529; C5 = 0,02737.

More precise dependence of density on temperature and salt:
𝜌

𝜌0
= C6 + C7

T

T0
+ C8

S

S0
+ C9

T

T0

2
(5.18)

with values T0, S0, ρ0 and atmospheric pressure as above C6 = 0,97529, C7= - 0,00006, C8 = 0,02737, C9 = -

0,0014.



SEAWATER STATE EQUATION

If the compression of the liquid, i.e. the variation of density and the pressure ratio is taken into account, there 

are:

Where P0 is pressure is equal to 1 at., C11 is a constant quantity and a compression-resistant coefficient, can 

take: C10 = - 0,00119,    C11 = 0,428.10-4.

If you view the pressure as proportional to the depth, the equation (5.19) has: 

𝜌

𝜌0
= C6 + C7

T

T0
+ C8

S

S0
+ C9

T

T0

2
+ C10

T

T0

S

S0
× 1 +

P−P0

P0
C11 (5.19)

𝜌

𝜌0
= C6 + C7

T

T0
+ C8

S

S0
+ C9

T

T0

2
+ C10

T

T0

S

S0
× 1 + C12

Z

Z0
(5.20)

And simpler dependency(5.20) is:

Where Z0 = 1km, it is possible to take C12 = 0.00428, C13 = 0.0043; (1.44) and (1.45) by Linheikin, Mamaev, 

Vaxilev. Equations (5.19) and (5.20), although not allowing for accurate calculation of density, have been used to 

solve most of the problems of sea current theory that involve examining the nonlinear interactions of the fields of 

flow velocity, density, temperature, and salt level.

𝜌

𝜌0
= C6 + C7

T

T0
+ C8

S

S0
+ C9

T

T0

2

+ C10
T

T0

S

S0
+ C13

Z

Z0
(5.21)



TURBULENT MOTION, REYNOLDS STRESS

The system of moving equations, continuous, state and preservation of salt heat is closed. But to get accurate

results from solving those equations is impossible because the movement of the real liquid always has a tangled

feature. Therefore, we must consider the tangled characteristics in these equations. Performs real motion in the

form of medium motion and sublimation motion:

u = ത𝑢 + u′; v = ҧ𝑣 + v′; w = ഥ𝑤 + w′

P = ത𝑃 + P′; T = ത𝑇 + T′; s = ҧ𝑠 + s′; 𝜌 = ҧ𝜌 + 𝜌

Reynolds' 5 conditions for any function:

q1 + q2 = q
−

1 + q2
−

(5.22)

aq1 = aq, khi a = const (5.23)

തa = a, khia = const (5.24)

𝜕𝑞1
𝜕𝑥𝑖

=
𝜕𝑞1
𝜕𝑥𝑖

;
𝜕𝑞1
𝜕𝑡

=
𝜕𝑞1
𝜕𝑡

; 5.25

q1 ⋅ q2 = q1 ⋅ q2 (5.26)

q1 = ത𝑞1 + q
′
1 ; q2 = ത𝑞2 + q

′
2 ;

തq1 = തq1 (5.27)

q1
′ = 0 (5.28)

തq1 ⋅ q2 = q1 ⋅ q2 (5.29)

q1 ⋅ q2
′ = 0 (5.30)

When considering the velocity field we have the average value 

of speed pulses over a certain period of time will be zero:

ഥu′ =
1

T
∫t
t+T

u′dt = 0 (5.31)



MOTION EQUATION IN TURBULENT MOTION 

At any time and points, the speed components must satisfy the Navie-Stoc equation, so according to the Ox axis we have: 

𝜕ഥu

𝜕t
+

𝜕u′

𝜕t
+ തu + u′

𝜕ഥu

𝜕x
+

𝜕u′

𝜕x
+ തv + v′

𝜕ഥu

𝜕y
+

𝜕u′

𝜕y
+ w′ + ഥw

𝜕ഥu

𝜕z
+

𝜕u′

𝜕z
= X −

1

𝜌

𝜕ഥP

𝜕x
−

1

𝜌

𝜕P′

𝜕x
+ υΔതu + υΔu′ (5.32)          

According to the Reynolds systems and the consequences we have: ഥu′ = 0;
𝜕u′

𝜕x
= 0;

𝜕u′

𝜕t
= 0 (5.33)

TURBULENT MOTION, REYNOLDS STRESS

When we take the equation average (5.32) over the T period, we have: 
𝜕ഥu

𝜕t
+ തu

𝜕ഥu

𝜕x
+ തv

𝜕ഥu

𝜕y
+ ഥw

𝜕ഥu

𝜕z
+ u′

𝜕u′

𝜕x
+ v′

𝜕u′

𝜕y
+w′ 𝜕u

′

𝜕z
= X −

1

𝜌

𝜕ഥP

𝜕x
+ υΔതu (5.34)

Hay:  
𝜕ഥu

𝜕t
+ തu

𝜕ഥu

𝜕x
+ തv

𝜕ഥu

𝜕y
+ ഥw

𝜕ഥu

𝜕z
= X −

1

𝜌

𝜕ഥP

𝜕x
− vΔതu −

u′𝜕u′

𝜕x
−

v′ ƶu′

𝜕y
−

w′𝜕u′

𝜕z
= X −

1

𝜌

𝜕ഥP

𝜕x
+ vΔu −

u′2

𝜕x
−

𝜕𝑢′𝑣′

𝜕y
−

𝜕𝑢′w′

𝜕𝑧
+ u′

𝜕u′

𝜕x
+

u′
𝜕v′

𝜕y
+ u′

𝜕w′

𝜕z

When using continuous equations for medium and pulse motion and viewing the liquid as uncompressed, we 

have: 
𝜕ത𝑢

𝜕𝑥
+
𝜕 ҧ𝑣

𝜕𝑦
+
𝜕ഥ𝑤

𝜕𝑧
=
𝜕𝑢′

𝜕𝑥
+
𝜕𝑣′

𝜕𝑦
+
𝜕𝑤′

𝜕𝑧
= 0

Therefore:  
𝜕ഥu

𝜕t
+ തu

𝜕ഥu

𝜕x
+ തv

𝜕ഥu

𝜕y
+ ഥw

𝜕ഥu

𝜕z
= X −

1

ρ

𝜕ഥP

𝜕x
= υΔതu −

𝜕u′2

𝜕x
−

𝜕u′v′

𝜕y
−

𝜕u′w′

𝜕z

X −
1

ρ

𝜕ഥP

𝜕x
+

1

ρ
εΔതu − ρ

𝜕u′2

𝜕x
− ρ

𝜕u′v′

𝜕y
− ρ

𝜕u′w′

𝜕z
(5.35)



Thus the Navie-Stoc equation with tangled motion has been taken on average different from the

previous equation of having additional nonlinear components.:

−
𝜕 u′2

𝜕x
−

𝜕 u′v′

𝜕y
−

𝜕 u′w′

𝜕z
theo trục Ox;

−
𝜕 u′v′

𝜕x
−

𝜕 v′2

𝜕y
−

𝜕 u′w′

𝜕z
theo trục Oy;

−
𝜕 𝑢′𝑤′

𝜕𝑥
−

𝜕 𝑣′𝑤′

𝜕𝑦
−

𝜕 𝑤′2

𝜕𝑧
theo trục Oz;

TURBULENT MOTION, REYNOLDS STRESS

MOTION EQUATION IN TURBULENT MOTION 



TURBULENT MOTION, REYNOLDS STRESS

Motion Equation In Turbulent Motion 

Similar to the viscous case of the element viscosity we have:

−𝜌u′2 = 2𝜀
𝜕തu

𝜕x
= 𝜏xx

−𝜌u′v′ = 𝜌v′u′ = 𝜀
𝜕തv

𝜕x
+
𝜕തu

𝜕y
= 𝜏yx = 𝜏xy

−𝜌u′w′ = 𝜌w′u′ = 𝜀
𝜕ഥu

𝜕z
+

𝜕ഥw

𝜕x
= 𝜏zx = 𝜏xz (5.36)

−𝜌v′2 = 2𝜀
𝜕തv

𝜕y
= 𝜏yy

−𝜌v′w′ = 𝜌w′v′ = 𝜀
𝜕v

𝜕z
+
𝜕ഥw

𝜕y
= 𝜏zy = 𝜏yz

−𝜌w′2 = 2𝜀
𝜕ഥw

𝜕z
= 𝜏zz

Với 𝜀 =υ𝜌

It is the component of reynolds tenxo or tangled tenxo of tangled motion: 

𝜏𝑥𝑥 𝜏𝑦𝑥 𝜏𝑧𝑥
𝜏𝑥𝑦 𝜏𝑦𝑦 𝜏𝑧𝑦
𝜏𝑥𝑧 𝜏𝑦𝑧 𝜏𝑧𝑧



0 = X −
1

𝜌

𝜕ഥP

𝜕x
+
1

𝜕
𝜀
d2തu

𝜕z2
− 𝜌

du′w′

dz

0 = X −
1

𝜌

𝜕ഥP

𝜕x
+
1

𝜕

d

dz
𝜀
dതu

𝜕z
− 𝜌തu′w′ (5.37)

If you consider flat movement, the movement is constant. 
du

dt
= 0 have a speed (u) parallel to the Ox axis and 

depend only on z, there are: 

TURBULENT MOTION, REYNOLDS STRESS

Motion equation in turbulent motion 

Similar to element friction, to find the turbulent viscosity coefficient μ we write the 

pressure in the form of:

Because in turbulent motion. 𝜀
dഥu

dz
very small compared to 𝜌u′w′ So we can skip and watch closely: F = 𝜇

dതu

dz
= −𝜌u′w′

μ = −ρ
u′w′

du
‾

dx

(5.38)Therefore

It's a formula for calculating a turbulent viscosity coefficient. Theo Businesq the coefficient μ It depends

mainly on the intensity of the disorder. The turbulent viscosity coefficient has a range from 101 - 103 CGS.

F = 𝜇
dതu

dZ
= 𝜀

dതu

dz
− 𝜌u′w′



The assertion of u'v', u'w', v'w' in the other mean line does not allow to say that there must be some

correlation between the ascension u', v', w’. When there is no correlation, u'v’ is Zero. The correlation

coefficient is calculated as follows: K =
u′v′

u′2⋅ v′2
(5.39)

It has been determined that when the density is highly stable, the slime coefficient is small. So when the

water mass has great stability, the Reynolds stress contains the w' component that must be smaller than reynolds

stress without w', so the horizontal and vertical viscosity coefficients are different.
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Motion equation in turbulent motion 

𝜏xx = 2𝜇V
𝜕തu

𝜕x
= −𝜌u′2

𝜏𝑦𝑦 = 2𝜇V
𝜕തv

𝜕y
= −𝜌v′2

𝜏𝑧𝑧 = 2𝜇h
𝜕ഥw

𝜕z
= −𝜌w′2

𝜏xy = 𝜏yx = 𝜇V
𝜕തv

𝜕x
+
𝜕തu

𝜕y
= −𝜌u′v′

𝜏xz = 𝜏zx = 𝜇h
𝜕തu

𝜕z
+ 𝜇V = −𝜌u′v′

𝜏xy = 𝜏yx = 𝜇V
𝜕തv

𝜕x
+
𝜕തu

𝜕y
= −𝜌u′v′ (5.40)

- μh: the turbulent viscosity coefficient of the horizontal speed gradient 

- μv the turbulent viscosity coefficient of the vertical speed gradient.



If the pressure pressures act on a fluid volume factor. 𝛿𝑥, 𝛿𝑦, 𝛿𝑧, with hypothesis 𝜇h và 𝜇v is constant and

considering the continuity equation for average motion, there are:

𝛿x𝛿y𝛿z
𝜕𝜏xx
𝜕x

+
𝜕𝜏xx
𝜕y

+
𝜕𝜏zx
𝜕z

= 𝛿x𝛿y𝛿z 𝜇h
𝛿2 ത𝑢

𝜕x2
+ 𝜇h

𝜕2 ത𝑢

𝜕y2
+ 𝜇h

𝜕2 ത𝑢

𝜕z2

The average motion equation is rewritten as:

𝑑ത𝑢

𝑑𝑡
=
𝜕ത𝑢

𝜕𝑡
+ 𝑢

𝜕ത𝑢

𝜕𝑥
+ ҧ𝑣

𝜕ത𝑢

𝜕𝑦
+ ഥ𝑤

𝜕ത𝑢

𝜕𝑧
= 𝑋 −

1

𝜌

𝜕 ҧ𝑝

𝜕𝑥
+
𝜇𝑣
𝜌

𝜕2 ത𝑢

𝜕𝑥2
+
𝜕2 ത𝑢

𝜕𝑦2
+
𝜇ℎ
𝜌

𝜕2 ത𝑢

𝜕𝑧2

𝑑 ҧ𝑣

𝑑𝑡
=
𝜕 ҧ𝑣

𝜕𝑡
+ ത𝑢

𝜕ത𝑢

𝜕𝑥
+ ҧ𝑣

𝜕 ҧ𝑣

𝜕𝑥
+ ഥ𝑤

𝜕 ҧ𝑣

𝜕𝑧
= 𝑌 −

1

𝜌

𝜕 ҧ𝑝

𝜕𝑦
+
𝜇𝑣
𝜌

𝜕2 ҧ𝑣

𝜕𝑥2
+
𝜕2 ҧ𝑣

𝜕𝑦2
+
𝜇ℎ
𝜌

𝜕2 ҧ𝑣

𝜕𝑧2

𝑑ഥ𝑤

𝑑𝑡
=
𝜕ഥ𝑤

𝜕𝑡
+ ത𝑢

𝜕ഥ𝑤

𝜕𝑥
+ ҧ𝑣

𝜕ഥ𝑤

𝜕𝑦
+ ഥ𝑤

𝜕ഥ𝑤

𝜕𝑧
= 𝑋 −

1

𝜌

𝜕 ҧ𝑝

𝜕𝑧
+
𝜇𝑣
𝜌

𝜕2ഥ𝑤

𝜕𝑥2
+
𝜕2ഥ𝑤

𝜕𝑦2
+
𝜇ℎ
𝜌

𝜕2ഥ𝑤

𝜕𝑧2
)

(5.41)

Motion equation in turbulent motion 

Coefficients μhμv determined from Reynolds stress. Prandtl gives Reynolds stress formula as follows:

τzx = −ρ μ′w′
_________ dഥu

dz

dഥu

dz
(5.42) L is a turbulent road and μ = ρ𝓁2

dഥu

dz
(5.43)

Thus the coefficient of μ proportional to the cube of the turbulent distance.
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We have:
𝜕

𝜕t
+ ത𝑢 + u′

𝜕

𝜕x
+ v

__
+ v′

𝜕

𝜕y
+ ഥ𝑤 + w′ 𝜕

𝜕t
S
__

+ S′ = 0 (5.44)

If the liquid to be uncompressed,:
𝜕u′

𝜕x
+

𝜕v′

𝜕y
+

𝜕w′

𝜕z
= 0

And take the average equation (5.44) we have:
𝜕

𝜕t
+ ത𝑢

𝜕

𝜕x
+ ҧ𝑣

𝜕

𝜕t
+ ഥ𝑤

𝜕

𝜕t
S
¯

+
𝜕

𝜕x
u′S′
______

+
𝜕

𝜕u
v′S′
______

+
𝜕

𝜕z
w′S′
______

= 0 (5.45)
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Salt Conservation Equation in  turbulent motion 

In the concept of a turbulent diffusion coefficient: Ax, Ay, Az of salt in the directions Ox, Oy, Oz. These 

coefficients are calculated according to expressions: u′s′
______

= −
Ax

𝜌

𝜕S
__

𝜕x
; v′s′
_____

= −
Ay

𝜌

𝜕S
__

𝜕y
; w′s′
______

= −
A𝑧

𝜌

𝜕S
__

𝜕z
(5.46 )

Hence, . 
𝜕𝑆

𝜕𝑡
+ ത𝑢

𝜕𝑆

𝜕𝑥
+ ҧ𝑣

𝜕𝑆

𝜕𝑦
+ ഥ𝑤

𝜕𝑆

𝜕𝑧
=

𝜕

𝜕𝑥

𝐴𝑥

𝜌

𝜕𝑆

𝜕𝑥
+

𝜕

𝜕𝑦

𝐴𝑦

𝜌

𝜕𝑆

𝜕𝑦
+

𝜕

𝜕𝑧

𝐴𝑧

𝜌

𝜕𝑆

𝜕𝑧
(5.47)

(5.47) is the equation that diffuses salt in the sea. Similarly, we also found a thermal diffusion equation.

𝜕T
__

𝜕t
+ ത𝑢

𝜕T
__

𝜕x
+ ҧ𝑣

𝜕T
__

𝜕y
+ ഥ𝑤

𝜕T
__

𝜕z
=

𝜕

𝜕x

ATx

𝜌

𝜕T
__

𝜕x
+

𝜕

𝜕y

ATy

𝜌

𝜕T
__

𝜕y
+

𝜕

𝜕z

AT𝑧

𝜌

𝜕T
__

𝜕z
(5.48)



Equations of motion are differential equations, in order to solve those equations, there must

be boundary conditions or limit conditions. Boundary conditions are generally divided into

three categories:

1. Dynamic boundary conditions.

2. Kinetic boundary conditions. 

3. Thermal and salt conditions.

TURBULENT MOTION, REYNOLDS STRESS

BOUNDARY CONDITIONS



These are conditions that indicate the continuity of the stressor at the boundary between the atmosphere and the 

ocean.

When z = - ζ (x,y,t), That is, on the free side of the ocean.:

P = Pa (5.49)

𝜇h
𝜕u

𝜕z
= −𝜏x; 𝜇h

𝜕v

𝜕z
= −𝜏y (5.50)

where as τx, τy is a wind tangential  stress on the sea surface.

Because of the lowering of ocean levels ζ It is usually very small compared to the depth of the sea, so these 

conditions are sometimes given on the non-noisy side of the sea.: z = 0.

Where Pa is the atmospheric pressure
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Dynamic boundary conditions



This condition indicates impermeability to liquids on the free side:

z = - ζ (x, y, t), tại đáy z = H (x,y) and in boundaries.

- Khi z= - ζ(x, y, t) W = −
d𝜉

dt
= −

d𝜉

dt
+ u

d𝜉

dx
+ v

d𝜉

dy
(5.51)

- Khi z = H(x,y): Kinetic boundary condition can take two forms.:

a) W = u
𝜕H

𝜕x
+ v

𝜕H

𝜕y
frictionless sliding conditions (5.52)

b) u = v = 0,w = 0 no-slip condition (5.53)
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Kinetic boundary conditions

The choice of condition a) or b) is dependent on friction with the bottom. Sliding conditions do not take into 

account the bottom border layer.

- At the solid boundary:       u = v = 0 adhesive and impermeable boundary conditions (5.54)

- At the liquid boundary, give before the distribution of the speed vector:  VL = VL(x, y, z) (5.55)



These conditions denote the effect of the transport of thermal and salt through the dividing sides.

On the free side of the ocean.: Khi z = - ζ(x,y,t) the general form of these conditions is:

𝛾T + 𝛿
𝜕T

𝜕z
= GT 𝛾S + 𝛿

𝜕S

𝜕z
= GS (5.56)

if δ = 0 The condition is for the values of the function itself., and if γ = 0 then for the gradient of that function.

- At the bottom and at the lateral solid boundaries, for conditions without the flow of thermal and salt according

to the route method with the margin:
𝜕T

𝜕n
=

𝜕S

𝜕n
= 0 (5.57)
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Thermal and salt conditions

- At the side fluids boundaries:
𝜕T

𝜕n
= GTn;

𝜕S

𝜕n
= GSn (5.58)

The initial conditions reflect the thermal state of the ocean at the initial time t = 0. It is usually required to give in

advance the field of ocean features at the initial time:

u = u 0 , v = v 0 , w = w 0 , p = p 0 , T = T 0 , s = s 0 , 𝜌 = 𝜌 0 (5.59)



Classification of non-stop processes in the ocean and some approximations
applied to currents research

When studying the ocean, there are seeing the phenomenon of fluctuations over time of marine

fields such as the velocity field., temperature field T0, salt degree field S0/00, density ρ...,

they make up a variety of physical processes in the ocean. To classify these processes in time and

space, similar to the classification of changes in climate fields, one derives from the spectrum of the

cycle, which divides them into seven time periods.



1. Small-scale phenomena: Cycles from a few seconds to tens of minutes.

2. Medium-scale phenomena: Cycles from a few hours to daily.

3. Syn scale change: Cycles a few days to months

4. Season fluctuations: Five-year cycles and larger.

5. Changes between years: I.e. changes consistent with the state of large seas and of the

entire atmosphere from year to year.

6. Changes in the century: Cycles of several decades. It is the study of the connection

between the ocean and changes in the century of climate. \

7. Changes between centuries: Cycles of hundreds of years and larger. It is the study of the

connection between the ocean and the fluctuations between the centuries of climate.

CLASSIFICATION OF NON-STOP PROCESSES



SOME APPROXIMATIONS APPLIED TO CURRENTS RESEARCH

For average movements, the following approximations are correct.:

1. QUASI-STATIC APPROXIMATION

2. APPROX. BUSINESQ 

3. APPROXIMATIONS TO THE CORIOLIS FORCE

4. GEOLOCATION SYSTE



QUASI-STATIC APPROXIMATION

The studies of medium and large-scale processes in the ocean (vertical scale H ≈ 100 m ÷ 1 km and

horizontal scale (L ≈ 100 ÷ 1000 km) show that vertical velocity is much smaller than horizontal

velocity. Consider the order of quantity in the conservation of mass equation (the continuity equation):

W = H.U/L suy ra W = 10−3U (5.60)

Where W, U are the characteristic quantities of the vertical and horizontal speeds.

Since the vertical velocity in the ocean is very small, it is possible to write the equation of vertical

motion as
𝜕𝑃

𝜕𝑧
= 𝑔 ⋅ 𝜌 (5.61)

like the static equation.



APPROX. BUSINESQ

We know that the density of water in the ocean changes very little :
𝜕𝜌

𝜌
≈ 10−3(𝛿𝜌 is the

density anomaly), so density ρ can be replaced by ρ0 (average density), then the

equation for conservation of mass is written as: divV = 0 (5.62)

(incompressible condition of seawater).



APPROXIMATIONS TO THE CORIOLIS FORCE

When studying medium- and large-scale motion in the ocean as known /W/ <</U/, the term

with coefficient 2ωwcosϕ in the component of the Coriolis force along the Ox axis can be

ignored. But it may be necessary to account for this term in the narrow band at the equator.
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