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GEOSPHERE CURRENTS

❖ INCLINATION OF ISOBARIC SURFACES IN FLUIDS

In the conditions that (1) frictionless horizontal flow at a constant speed, (2) the single

external force (gravity), and (3) no vertical movement, the horizontal components of Coriolis force

and gradient pressure are balanced:

(6.1)

If we take the cubes of each equation and add them together, we have:

Ở đây

(6.2)
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GEOSPHERE CURRENTS

❖ INCLINATION OF ISOBARIC SURFACES

Equation (6.2) shows the requirement for the forces balance is the equalization between the

Coriolis force and horizontal pressure. Thus, the horizontal flow vector is parallel to the broken

isobaric lines in a direction that the larger isobaric lines in the Northern Hemisphere have located

on the right in the direction of the flow and vice versa in the Southern Hemisphere. This type of

flow is called the barotropic flow and the balance of forces represented by equation (6.2) is

called the barotropic flow equilibrium.



GEOSPHERE CURRENTS

❖ INCLINATION OF ISOBARIC SURFACES IN FLUIDS

Figure 6.1. Inclination of isobaric surfaces 

Replace the horizontal pressure gradient in Equation (6.1) with the angle of inclination of

the isobaric surfaces. Figure 6.1a shows the inclination of the isostatic surfaces relative to the

equipotential surfaces. The nOz plane is perpendicular to the flow rate c. Pressure at point A is

equal to “P” and at point B is equal to “𝑃 + Δ𝑃 = 𝑃 + 𝜌𝑔Δ𝑧”, where 𝜌 − water column density

between points C and B



GEOSPHERE CURRENTS

❖ Inclination OF ISOBARIC SURFACES

Thus:

(6.3)

From those equations, the angle of inclination of an isobaric surface is

proportional to the flow rate at the depth of that surface.

Δ𝑃

Δ𝑛
= 𝜌𝑔

Δ𝑧

Δ𝑛
𝜕𝑃

𝜕𝑛
= 𝜌𝑔𝑡 𝑔 𝛽

If the Oz axis trend downwards, the angle 𝛽 will follow clockwise rotation. From equations (6.2)

and (6.3), the tg values 𝛽 express as:

t g 𝛽 =
2𝜔𝑐 𝑠𝑖n𝜑

𝑔



GEOSPHERE CURRENTS

❖ INCLINATION OF ISOBARIC SURFACES

The impact of the Coriolis force in actual currents creates the horizontal Circulation trend. As a

result, lighter water in the upper layer moves on the right side of the flow direction and vice versa while

the Southern Hemisphere sees the opposite movement. Therefore, with the same inclination of

isobaric surfaces, the inclination of isopycnic surfaces appears. The angle between isobaric surfaces

and isobaric volume is contrary. Moreover, the inclination of isopycnic surfaces appears somehow

leads to the inclination of isobaric surfaces which causes horizontal gradient pressure. The distribution

of isopycnic surfaces can relate to the water movement,



GEOSPHERE CURRENTS

Figure 6.1b shows the inclination of the isopycnic curves relative to the isostatic surfaces. Since the pressures

at points a2 and b2 are equal, then: : (6.5)

Besides,

Ta change of expression (6.5), simplified g : (6.6)

❖ INCLINATION OF ISOBARIC SURFACES IN FLUIDS

𝑔𝜌1 𝑏1𝑏2 = 𝑔𝜌2 𝑎1𝑎2

𝑏1𝑏2 = 𝑏1𝑛 + 𝑏2𝑛 𝑎1𝑎2 = 𝑎1𝑚+ 𝑎2𝑚

𝑏1𝑛

𝑎1𝑛
= 𝑡g𝛽1

𝑎2𝑚

𝑏2𝑚
= 𝑡g𝛽2

𝑏2𝑛

𝑎1𝑛
= 𝑡g 𝛾

𝜌1 𝑎1𝑛 𝑡g 𝛽1 + 𝑎1𝑛 𝑡g 𝛾 = 𝜌2 𝑎1𝑛 𝑡g 𝛾 + 𝑎1𝑛 𝑡g 𝛽2

simplified the number of term a1n and substitute (6.6) the values:

(6.7)

và𝑡 g 𝛽1 =
2𝜔𝑐1 𝑠𝑖n𝜑

𝑔

tg 𝛾 =
2𝜔 𝑠in𝜑

𝑔
⋅
𝜌1𝑐1 − 𝜌2𝑐2
𝜌2 − 𝜌1

𝑡 g 𝛽2 =
2𝜔𝑐2 𝑠𝑖n𝜑

𝑔
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In meteorology, this similar to the Margules formula which is:

1) The position of the isopycnic lines on the cross-section allows consideration of the presence of

flow perpendicular to the plane of the section and its direction;

2) The greater the inclination of the isopycnic lines, the smaller the density difference of the layers,

the larger the speed difference. In immobilized layers, the isopycnic curves as well as the

isobaric lines are horizontal

3) If layers of the same density move at different velocities, then 𝛾 = 900. In this case, the layers

are very unstable and the 𝛾 has no meaning.

❖ INCLINATION OF ISOBARIC SURFACES IN FLUIDS



GEOSPHERE CURRENTS

❖METHOD OF DYNAMIC CALCULATION OF GEOSPHERE CURRENTS

From the equations (6.1), find equation for u and v:

(6.8)

These equations represent the balance between the horizontal composition of the friction force and

the Coriolis force produced by the movement itself.

𝑢 = −
1

2𝜔𝜌 𝑠𝑖n𝜑
⋅
𝜕𝑃

𝜕𝑦
= −

𝛼

2𝜔 𝑠𝑖n𝜑
⋅
𝜕𝑃

𝜕𝑦

𝑣 =
1

2𝜔𝜌 𝑠𝑖n𝜑
⋅
𝜕𝑃

𝜕𝑥
=

𝛼

2𝜔 𝑠𝑖n𝜑
⋅
𝜕𝑃

𝜕𝑥

(6.9)Because: 𝛼𝜕𝑃 = 𝜕𝐷, then the expressions (6.8) can be rewritten as follows: U =
1

2ω sinφ
⋅
𝜕D

𝜕y 𝑉 =
1

2𝜔 𝑠𝑖n𝜑
⋅
𝜕D

𝜕x

If the direction of n is the greatest inclination of the isotropic side, then we have the speed:

𝑐 =
1

2𝜔 𝑠𝑖n𝜑
⋅
𝜕𝐷

𝜕𝑛
Where

𝜕𝐷

𝜕n
actual inclination of the isobaric surfaces relative to the equipotential plane(6.10)
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❖METHOD OF DYNAMIC CALCULATION OF GEOSPHERE CURRENTS

𝐶1 =
𝐷𝐵1 − 𝐷𝐴1
2𝜔𝓁 𝑠𝑖n𝜑

The relative "inclination" between two hydrological stations is not difficult to determine. Suppose we have two

hydrological stations A and B . Consider two isostatic surfaces P1 and P2. Let the distance between A and B be 𝓁.

Then, for the isobaric surface P1, the flow rate in the direction perpendicular to AB is :

Take the first expression minus the second, we have results as below

(6.11)

The line segment AB = 𝓁 is accepted as the differential factor dn , dynamic height 𝐷𝐴1 and 𝐷𝐵1 of the

isobaric surface P1 relative to the equipotential surface is unknown at present. The speed at the isobaric surface

P2 is determined by the same formula:
𝐶2 =

𝐷𝐵1 − 𝐷𝐵2
2𝜔𝓁 𝑠𝑖n𝜑

𝐶1 − 𝐶2 =
𝐷𝐵1 − 𝐷𝐵2 − 𝐷𝐴1 − 𝐷𝐴2

2𝜔𝓁 𝑠𝑖n𝜑
=
Δ𝐷𝐵 − Δ𝐷𝐴
2𝜔𝓁 𝑠𝑖n𝜑



GEOSPHERE CURRENTS

Thus, the dynamic method only allows for determining the difference in speeds. If we know the

flow rate at a certain cross-section (where the flow velocity is zero), the problem is simply solved. But

in practice, we almost always do not know that speed, so the problem is how to choose the zero

surface. Thanks to equation (6.11), it is possible to calculate the real speed of the flow at different

water levels.

Based on equation (6.10), it can be determined that the zero surface is the depth at which the

horizontal gradient components of the dynamic depth approach 0.

❖METHOD OF DYNAMIC CALCULATION OF GEOSPHERE CURRENTS



The Defant method is the most common

method for choosing the zero side, which is

based entirely on the dynamic characteristics

of the flow and does not contain assumptions

like other methods.

Figure 6.2. To identify the face without 

the Defant method

❖METHOD OF DYNAMIC CALCULATION OF GEOSPHERE CURRENTS

GEOSPHERE CURRENTS



GEOSPHERE CURRENTS

When searching for zero surfaces, Defant noticed that most of the differences in curves between

dynamic depths in two oceanographic stations (Figure 6.2) for different station pairs are characterized by

the existence of more or less straight segments. standing, for pairs of neighboring stations, they are

distributed at approximately the same depths.

Within those segments, the dynamic depth differences remain constant. This means the speeds of

the currents are identical.

If the 0 mark is not located in the vicinity of this vertical segment, then in the whole layers that have

no difference in flow rates. If the 0 mark is not located far enough from this section, then the flow rates in

the entire layer will be equally large. The latter is also less realistic, so Defant assumes that the flow

rates throughout the layer are equal to the difference between the same dynamic depths, while the zero

surface is in the center of the layer.

❖METHOD OF DYNAMIC CALCULATION OF GEOSPHERE CURRENTS



GEOSPHERE CURRENTS

There is another method is use to select the zero surface based on the analysis of the individual

volume difference curves between neighbouring stations – Parr's method. This method is attributed to

the identification of variations in water layers between selected mass isomorphs and so on.

Since the fact that in the World Ocean does not exist on a single (continuous) side, instead of using

a reference side as common, the geosphere currents are assumed to equal zero. For this purpose, the

reference surface chosen in the class between 1000 and 2000 m is quite appropriate, while the surface

at 3000 m of depth is chosen in some examples such as the southern Ocean

❖METHOD OF DYNAMIC CALCULATION OF GEOSPHERE CURRENTS



GEOSPHERE CURRENTS

Other difficulties in determining the zero side, the method of dynamic calculation also has a series

of disadvantages:

• As not mention to the pure flow component under the direct impact of tangential wind stress,

exclusive the speed and direction of the wind, the swirling and non-stop components caused by

forces not present in the basic equation (6.11), as well as ignoring the seabed topography.

❖METHOD OF DYNAMIC CALCULATION OF GEOSPHERE CURRENTS

• In addition, large deviations in flow rate can appear if the hydrological cross section is stimulated for

a long period of time, furthermore not perpendicular to the direction of the flow, the distance

between stations is not the same and quite large, especially in areas with front.



GEOSPHERE CURRENTS

Despite such major drawbacks, the method of dynamic calculation due to simplicity and ease

of use has been recognized worldwide and remains valid to this day. This method is often applied

to standard cross sections, when performing standard cross sections always have to compare the

results received with the estimated data in previous years. We also note that ocean circulation

maps built on dynamic methods (Shott, 1933, Sverdrup, 1941, Ditrich, 1961, etc.) are generally

quite consistent with observational data and overall ocean circulation mathematical modeling

results.

❖METHOD OF DYNAMIC CALCULATION OF GEOSPHERE CURRENTS



GEOSPHERE CURRENTS

Figure 6.3: The dynamic surface map of 

Nam Duong as an example

Figure 6.3 shows the dynamic surface

map of Nam Duong as an example.

❖ DYNAMIC METHODS FOR CALCULATION OF GEOGRAPHIC FLUID
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STEADY CURRENTS

Since the friction stress of the wind is greater than the other forces that cause the flow, on average the wind

flow contributes the largest part to the total speed of the flows, especially in the upper layer of the ocean. Ekman

made the following assumptions:

1. The sea is shoreless and infinitely deep (to eliminate the effect of friction with the shore and bottom);

2. Wind and currents caused by it are stable and do not change over time;

3. The wind and current speed fields do not vary in the horizontal direction (no divergence);

4. The vertical component of the speed is absent because the motion occurs only in the horizontal direction

and does not diverge;

5. Sea is homogeneous in density (to exclude density flow) and incompressible water;

6. The sea surface is the horizontal plane (to exclude the gradient component);

7. The accepted coefficient of tangle friction Az remains constant with depth

❖ Ekman theory with deep currents



STEADY CURRENTS

With all the assumptions for steady flow, a turbulent frictional is the only force that transmits the impact of

wind stress down to the depth and the Coriolis force is equal to it. The equation of motion in this case has the

form:
Here we put:

- The Y axis to coincide with the wind direction,

- The X axis is towards the right,

- The Z axis is pointing down

❖ Ekman theory with deep currents

𝐴𝑧
𝜌

𝑑2𝑢

𝑑𝑧2
+ 2𝜔𝑣 𝑠𝑖𝑛 𝜑 = 0

𝐴𝑧
𝜌

𝑑2𝑣

𝑑𝑧2
− 2𝜔𝑢 𝑠𝑖𝑛 𝜑 = 0

Transform the expressions above into forms:

If symbolize: Then the equations (6.12) are rewritten to:

𝑑2𝑢

𝑑𝑧2
+
2𝜌

𝐴𝑧
𝜔𝑣 𝑠𝑖n𝜑 = 0

𝑑2𝑣

𝑑𝑧2
−
2𝜌

𝐴𝑧
𝜔u 𝑠𝑖n𝜑 = 0

𝜌𝜔 𝑠𝑖n𝜑

𝐴𝑧
= 𝑎2

(6.12)

𝑑2𝑢

𝑑𝑧2
+ 2𝑎2𝑣 = 0

𝑑2𝑣

𝑑𝑧2
− 2𝑎2𝑢 = 0

(6.13)
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This is a system of second-order ordinary differential equations and solutions of the form :

We state the first boundary condition: the flow rate when increasing depth needs to be limited, i.e.

❖ Ekman theory with deep currents

(𝑐1, 𝑐2, 𝜙1, 𝜙2 - constants)
𝑢 = 𝑐1𝑒

𝑎𝑧 𝑐𝑜𝑠 𝑎𝑧 + 𝜙1 + 𝑐2𝑒
−𝑎𝑧 𝑐𝑜𝑠 𝑎𝑧 + 𝜙2 ,

𝑣 = 𝑐1𝑒
𝑎𝑧 𝑠𝑖𝑛 𝑎𝑧 + 𝜙1 − 𝑐2𝑒

−𝑎𝑧 𝑠𝑖𝑛 𝑎𝑧 + 𝜙2 ,

u ≠ ∞, v≠ ∞khi z → ∞

In this case, c1 must be zero, otherwise, the increasing of (z) the speed will increase infinitely. At

the same time, it is no longer necessary to identify 𝜙1.

We rewrite the equations (6.14) as follows: 𝑣 = −𝑐2𝑒
−𝑎𝑧sin 𝑎𝑧 + 𝜙2

Then, at z = 0 and the edge stress in the water just below the

ocean surface will be equal to the wind gland friction, we have:

• At sea surface z = 0

• Wind tangeriial stress

• And axis Y in the direction gió.

𝑢 = 𝑐2𝑒
−𝑎𝑧co s 𝑎𝑧 + 𝜙2 ;

𝜏 = 𝐴𝑧
𝑑𝑐

𝑑𝑧

−𝐴𝑧
𝑑𝑢

𝑑𝑧
= 0

−𝐴𝑧
𝑑𝑣

𝑑𝑧
= 𝜏

We set out the second boundary condition:

(6.16)

(6.15)



STEADY CURRENTS

Substituting the value to equation (6.17), we get

Equation (6.17) can draw the conclusion that with the same conditions, the flow velocity

decreases as latitude increases. Along with (6.17) the equations (6.15) can be rewritten

The speed module symbol at the surface is 𝑈0 , when:

𝑈0 = 𝑢2 + 𝑣2 =
𝜏

2𝐴𝑧𝑎
.

𝑈0 = 𝑢2 + 𝑣2 =
𝜏

2𝐴𝑧𝑎
.

𝑢 = 𝑈0𝑒
−𝑎𝑧cos(45 − 𝑎𝑧)

𝑣 = 𝑈0𝑒
−𝑎𝑧sin(45 − 𝑎𝑧)

❖ Ekman theory with deep currents

(6.19)

(6.17)

(6.18)
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Figure 6.5. The speed of fundamental currents 

according to Ekman

❖ Ekman's theory with deep current
Along with a decrease in speed with depth, the current

turns to the right relative to its direction at sea level.

Figure 6.4 represents the speed line described in the

shape of loga twist and represents a change in direction and

the speed of wind flow in depth. Figure 6.4 shows that, at

some depth, the speed vector will point in the opposite

direction to the face flow.

It is often referred to as the depth of friction (rather the

impact depth of friction) and the symbol in D.:

𝐷 =
𝜋

𝑎
= 𝜋

𝐴𝑧
𝜌𝜔si n𝜑

(6.20)
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The quantity Az is difficult to determine, so when there is flow monitoring data in the

ocean surface layer, it is possible to find Az from formula (6.20) if the quantity D is known:

(6.21)

The total flux of the drift is determined by integrating from zero to infinity in the

coordinate axes directions:

(6.22)

𝐴𝑧 =
𝐷2𝜌𝜔si n𝜑

𝜋2

𝑆𝑥 = න
0

∞

𝑢𝑑𝑧 và 𝑆𝑦 = න
0

∞

𝑣𝑑𝑧

❖ Ekman theory with deep currents

Substitute u and v from (6.19) to (6.22):

𝑆𝑥 = 𝑈0න
0

∞

𝑒−𝑎𝑧𝑐𝑜 𝑠 45∘ − 𝑎𝑧 𝑑𝑧 𝑆𝑦 = 𝑈0න
0

∞

𝑒−𝑎𝑧𝑠𝑖 𝑛 45∘ − 𝑎𝑧 𝑑𝑧
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❖ Ekman's theory for the deep sea

න𝑒𝑎𝑧𝑠𝑖 𝑛 𝑏 𝑥𝑑𝑥 =
𝑒𝑎𝑧

𝑎2 + 𝑏2
𝑎𝑠𝑖 𝑛 𝑏𝑥 − 𝑏𝑐𝑜 𝑠 𝑏𝑥 න 𝑒𝑎𝑧𝑐𝑜 𝑠 𝑏 𝑥𝑑𝑥 =

𝑒𝑎𝑧

𝑎2 + 𝑏2
𝑎𝑐𝑜 𝑠 𝑏𝑥 − 𝑏𝑠𝑖 𝑛 𝑏𝑥

𝑆𝑥 = ቤ
𝑈0𝑒

−𝑎𝑧

2𝑎2
[−acos(45 − 𝑎𝑧) − asin(45 − 𝑎𝑧)]

0

∞

=
𝑈0
2𝑎2

𝑎 2 =
𝑈0 2

2𝑎

= 𝑈0 2/2𝑎 ⋅ 𝜋/𝑎 ⋅ 𝑎/𝜋 =
𝑈0 2𝐷

2𝜋

𝑆𝑦 = ቤ
𝑈0𝑒

−𝑎𝑧

2𝑎2
[−𝑎sin(45 − 𝑎𝑧) + 𝑎cos(45 − 𝑎𝑧)]

0

∞

= 0

𝑆𝑥 =
𝑈0 2𝐷

2𝜋
, 𝑆𝑦= 0

,

(6.23)
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❖ Ekman's theory for the shallow sea

There is no difference in results for the shallow sea. By integral equation (6.13) and sets the

additional conditions so that at the seabed both the speed components of u and v are equal to zero.

Without repeating all of Ekman's arguments, we write:

The constants analyzed by A and B are equal to:

𝑢 = 𝐴𝑠ℎ𝑎𝜉 𝑐os 𝑎 𝜉 − 𝐵𝑐ℎ𝑎𝜉 𝑠𝑖n 𝑎 𝜉
𝑣 = 𝐴𝑐ℎ𝑎𝜉 𝑠𝑖n 𝑎 𝜉 + 𝐵s h𝑎 𝜉 𝑐𝑜s 𝑎 𝜉

𝐴 =
𝜏𝐷

𝜋𝐴𝑧

c h 𝑎 𝑑co𝑠 𝑎𝑑 + sh 𝑎 𝑑si𝑛 𝑎𝑑

c h 2 𝑎𝑑 + co s 𝑎 𝑑

𝐵 =
𝜏𝐷

𝜋𝐴𝑧

c h 𝑎 𝑑co𝑠 𝑎𝑑 − sℎ 𝑎𝑑 si𝑛 𝑎𝑑

c h2 𝑎𝑑 + cos 𝑎 𝑑

With d - is sea depth

𝜉 - vertical coordinates at the base.

(6.24)
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The angle between the flow direction at the surface and axis Y is determined by the expression:

Figure 6.5 Current velocity heads in the sea of finite 

depth depending on the d/D ratio
From Figure 6.5 this infers that, when d > D the speed of the

vectors the actual flow speed coincides with the case of the

infinite deep sea (see Figure 6.4).

t g 𝑈0, 𝑌 =
𝑈0

𝑉0
=

s h 2𝑎𝑑−si n 2𝑎𝑑

s h 2𝑎𝑑+si n 2𝑎𝑑
(𝟔. 𝟐𝟓) where 2𝑎𝑑 is the depth of sea:

❖ Ekman's theory for the shallow sea

Then the quantity d/D can be consider as shallow water

indicator

The table below shows the ⍺ value between the flow vector 

and the wind vector that depends on the quantity d/D

d/D 0.1 0.25 0.5 0.75 1 >1

⍺ 5 21.5 45 45.5 45 45
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❖ The development of fluency currents

Before stabilizing, the direction and velocity of flow may be much different than defined by formulas

(6.19) and (6.24). Ekman looked at the development of drift currents in case the wind with constant

intensity and direction began to effect the silent sea surface in a stable state. There is seeing that the

flow at different water levels develops differently and the deeper you dive, the later stability appears.
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In Figure 6.6, the endpoint of the unstable flow vector draws a complex spiral-shaped curve that

gradually approaches a stable value.

Figure 6.6. The velocity curve shows the 

development of pure drift current at the sea 

surface (time from wind arrival is constant 

equal to pendulum hours).

❖ The development of flowing currents



GRADIENT CURRENTS THEORY

In nature, the rise and fall of water surface occurs even far from shore. The inclination of the sea

surface can create a pressure gradient that causes the gradient currents. Ekman made the following

assumptions to simplify the process:

1) The landless sea and homogeneous in density;

2) The inclination of the sea surface is constant and stable in time and space;

3) Flat seabed;

4) Stable flow, no vertical components;

5) There is no fluctuation in the turbulent viscosity coefficient with depth.



GRADIENT CURRENTS THEORY

In this case, the following impact forces are the horizontal pressure, the Coriolis force, and the friction

force in which the bottom friction is transmitted vertically, which constrains movement.

Motion equations write in the form of:

𝐴𝑧
𝜌

𝑑2𝑢

𝑑𝑧2
+ 2𝜔𝑣si n𝜑 = 0

𝐴𝑍
𝜌

𝑑2𝑣

𝑑𝑧2
− 2𝜔𝑢si n𝜑 + 𝑔si n𝛽 = 0 (6.26)

Formulas for determining gradien flow rate components are written as:

𝑢 =
𝑔sin𝛽

2𝜔sin𝜑
1 −

ch 𝑎(𝐻 + 𝑧)cos 𝑎(𝐻 − 𝑧) + ch𝑎(𝐻 − 𝑧)cos(𝐻 + 𝑧)

ch 2𝑎𝐻 + cos 2𝑎𝐻

𝑣 =
𝑔sin𝛽

2𝜔sin𝜑

sh 𝑎(𝐻 + 𝑧)sin 𝑎(𝐻 − 𝑧) + 𝑠ℎ𝑎(𝐻 − 𝑧)sin(𝐻 + 𝑧)

ch 2𝑎𝐻 + cos 2𝑎𝐻

(6.27)



GRADIENT CURRENTS THEORY

Figure 6.7.

Based on equations (6.27), (Figure

6.7a), the construction of the first curve's

velocity current for three values ​​of sea

depth is expressed as a fraction of the

depth friction. Figure 6.7 shows the

stereoscopic change of gradient flow in

different depths.



GRADIENT CURRENTS THEORY

As such, the influence of bottom friction is spread upwards within the range layer of the D-thickness.

Similar to the influence of the depth of friction in the Ekman drift, this layer is called the lower friction (the

lower boundary of the depth influence the bottom friction).

The total gradient flux has components in both coordinate axes. The Y-axis composition is only

significant in the layers near the bottom and when H > D it reaches a defined finite limit like the X-axis

component:

At the seabed, the currents are zero according to the condition. As the increase in distance from

the bottom, the flow velocity increases slowly turns to the right direction compared to the inclination of

the water level. As the water depth large enough, maximum speed and deflection angle 90 ° achieved

at a distance 𝐷 =
𝜋

𝑎
from the bottom. Since continuing leave from the bottom, the speed and direction

of the flow remain constant until reaching the surface.

(6.28)𝑆𝑦 →
𝐷𝑔si n𝛽

4𝜋𝜔si n𝜑
, 𝑆𝑥 →

𝑔si n 𝛽

2𝜔si n𝜑
𝐻 −

𝐷

2𝜋
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