

Co-funded by the Erasmus+ Programme of the European Union

Coastal Erosion and Flooding

GROUP PRESENTATION Topic 8. How nature and human kind alter the coasts

GROUP PRESENTATION Topic 9. Coastal Erosion and Flooding in Viet Nam \rightarrow Solutions

Ocean Environmental Management

4

Meteomarine for the coastal morphological processes

- Wind
- Waves
- Currents
- Variations in Water-Level
- Sea Level Rise and Subsidence

Coastal Settings

- Open coasts can be divided into two general categories based on the dominant processes acting on the coast over long periods of time (1000's of years or more)
- Erosional
 - Shorelines dominated by processes that form erosional features along the shore
 - Typically high-relief rocky coasts in tectonically active areas (e.g., the Pacific coast of North America) Typically high-relief rocky coasts
- Depositional
 - Shorelines dominated by processes that form deposits along the shore Include a wide spectrum of environments
 - Deltas, barrier islands, reef coasts, glaciated coasts, etc.
 - More typical of passive, or trailing-edge, continental margins (e.g., the Atlantic coast of North America)

Features of depositional coasts

Features of depositional shores

Ocean Environmental Management

8

Features of depositional coasts

Barrier islands along the South Carolina coast

21, 25-RPI

Barrier island, New Jersey

Figure 10-9c

Formation of barrier islands

- Sea level rose after the last Ice Age
- Caused barrier islands to roll toward shore like a tractor's tread

Features of erosional coasts

Features of erosional shores

- Headland
- Wave-cut cliff
- Sea cave
- Sea arch
- Sea stack
- Marine terrace

Sea stack and sea arch, Oregon

Features of erosional coasts

Beach compartments in southern California

- Beach compartments include:
 - Rivers
 - Beaches
 - Submarine canyons

Figure 10-12

Evidence of emerging and submerging shorelines

- Emergent features:
 - Marine terraces
 - Stranded beach deposits
- Submergent features:
 - Drowned beaches
 - Submerged dune topography
 - Drowned river valleys

Figure 10-13

Group discussion

Divide into 4 groups and find out the causes of coastal erosion

Causes of coastal erosion???

Group work

- Work individually in 5 minutes, point out several causes of coastal erosion
- Each group has 10 minutes to communicate and select the most dangerous causes.

Round-presentation

- Assign 1 speaker.
- Group's speaker has to visit each of your neighbor groups and present your findings in 3 minutes. Convince them that your solution is top choice. Take note.
- Other members: comment the visiting speaker. Take note.

Ocean Environmental Management

19

CAUSES OF COASTAL EROSION

Natural processes

Human activities

Ocean Environmental Management

20

A wave moving onto the shore

Wave movement Approaching shore – waves touch bottom Open ocean -Surf waves with constant (breakers form) (wavelength shortens) wavelength Depth is >1/2 wavelength Velocity decreases (wave height increases)

Chapter 20 Opener Understanding Earth, Fifth Edition © 2007 W.H. Freeman and Company

Wave erosion

- Breaking waves exert a great force
- Wave erosion is caused by
 - Wave impact and pressure
 - Abrasion by rock fragments

^{© 2005} Brooks/Cole - Thomson

Copyright © 2005 Pearson Pre

<image>

Copyright © 2005 Pearson Prentice Hall, Inc.

Wave erosion

Copyright © 2005 Pearson Prentice Hall, Inc.

20.6, 20.7-Tarbuck & Lutgens, 2005

Wave refraction

•Wave refraction

- Bending of a wave
- Causes waves to arrive nearly parallel to the shore
- •Consequences of wave refraction
 - Wave energy is concentrated against the sides and ends of headlands
 - Wave energy is spread out in bays and wave attack is weakened
 - Over time, wave erosion straightens an irregular shoreline

Wave refraction

- Wave energy focused on headland
- Wave energy dispersed over bay

9.19b-Thurman and Trujillo, 2004

Ocean Environmental Management

26

Wave refraction, Maili Point, Oahu

© 2005 Brooks/Cole - Thomson

Sediment movement on the shore

27

- Movement parallel to the (\leftrightarrow) shoreline
 - Caused by wave refraction
 - Along most shorelines, waves strike the shore at an angle
 - Waves that reach the shoreline at an angle cause the sediment to move along a beach in a zigzag pattern called beach drift

Sediment movement on the shore

• Movement parallel to the (\leftrightarrow) shoreline

- Oblique waves also produce longshore currents
 - Currents in the surf zone
 - Flow parallel to the coast
 - Easily moves fine suspended sand and rolls larger sand and gravel along the bottom

Movement of sand by longshore current

Sediment movement along a beach

11.19-Segar, 2007

Sediment movement on the shore

31

- Movement perpendicular (‡) to the shoreline
 - Caused by breaking waves
 - Swash (†)
 - Backwash (\downarrow)

	Light wave activity	Heavy wave activity
Berm/longshore bars	Berm is built at the expense of the longshore bars	Longshore bars are built at the expense of the berm
Wave energy	Low wave energy (non-storm conditions)	High wave energy (storm conditions)
Time span	Long time span (weeks or months)	Short time span (hours or days)
Characteristics	Creates summertime beach: sandy, wide berm, steep beach face	Creates wintertime beach: steep beach face rocky, narrow berm, flattened beach face

TABLE 11-2 Characteristics of beaches affected by light and heavy wave activity.

Copyright © 2004 Pearson Prentice Hall, Inc.

(a) Summertime beach (fair weather)

Copyright © 2004 Pearson Prentice Hall, Inc.

Copyright © 2004 Pearson Prentice Hall, Inc.

(b) Wintertime beach (storm)

Copyright © 2004 Pearson Prentice Hall, Inc.

Copyright © 2004 Pearson Prentice Hall, Inc.

11.2a-Thurman and Trujillo, 2004

Seasonal variation in beach profile

11.19-Segar, 2007

(c) Beach returns to summer profile when wave energy is decreased

Landforms and terminology in coastal regions

Figure 10-1

Movement of sand on the beach

38

- Movement perpendicular (**‡**) to shoreline
 - Caused by breaking waves
 - Light wave activity moves sand up the beach face toward the berm
 - Heavy wave activity moves sand down the beach face to the longshore bars
 - Produces seasonal changes in the beach

Light versus heavy wave activity

	Light wave activity	Heavy wave activity
Berm/long- shore bar	Berm grows and longshore bars shrink	Longshore bars grow and berm shrinks
Wave energy	Low	High
Time span	Long	Short
Characteristics	Summertime beach: sandy, wide berm, steep beach face	Wintertime beach: rocky, thin berm, flattened beach face

Summertime and wintertime beach conditions

Summertime beach (fair weather)

Summertime beach

Wintertime beach (storm)

Wintertime beach

Figure 10-2

Movement of sand on the beach

- Movement parallel (\leftrightarrow) to shoreline
 - Caused by wave refraction (bending)
 - Each wave transports sand either upcoast or downcoast
 - Huge volumes of sand are moved within the surf zone
 - The beach resembles a "river of sand"

Longshore current and longshore drift

- Longshore current = zigzag movement of water in the surf zone
- Longshore drift = movement of sediment caused by longshore current

Figure 10-3b

Changes in sea level

43

- Sea level has changed throughout time
- Tectonic and isostatic movements are localized and change the level of the land
- Eustatic changes cause sea level to rise or fall worldwide and are produced by:
 - Changes in seawater volume
 - Changes in ocean basin capacity

Sea level has risen since the last Ice Age

- Sea level was 120 meters (400 feet) lower during the last lce Age
- About 18,000 years ago, sea level began to rise as the glacial ice melted

Figure 10-14

Relative sea level rise at New York City

- Sea level has risen 40 centimeters (16 inches) since 1850
- Global warming is predicted to increase the rate of sea level rise

Figure 10-15

U.S. coastal erosion and deposition

Figure 10-16

Natural processes

- Differences in the wave conditions at certain coastal sections, a curved coastline or special bathymetric conditions \rightarrow increasing transport rates
- The loss of sand inland due to breaching and over-wash of a barrier island and wind transport
- Storm surge conditions with large waves → offshore loss of sediments due to non-equilibrium in the profile during the storm surge
- At coastlines with a very oblique wave approach → spit formations occur naturally parallel to the coast
- The loss of material from an area exposed on one or two sides typically happens at the tip of deltas, which do not receive sufficient material from the river → natural shifting of the river alignment (also due to human activities)
- Sea level rise

- Most of the causes affecting coastal communities are due to human intervention in the transport processes along the coastlines and/or reductions in the supply of sand to the shorelines:
 - Measures aimed at coastal protection, erosion protection and port engineering
 - Removal of coastal vegetation
 - Reduction of the sediment supply from the estuaries due to river engineering activities
 - Dredging and dumping of sediment

49

- Coastal Structures Interfering Actively with the Littoral Transport (the most common cause of coastal erosion)
- Passive Coastal Protection Structures
- Erosion of Crescent-Shaped Bays
- River Regulation Works and Sand Mining in Rivers
- Wake from Fast Ferries
- Sand and Coral Mining, and Maintenance Dredging

50

- Coastal Structures Interfering Actively with the Littoral Transport (the most common cause of coastal erosion)
 - A series of effects:
 - Trapping of sand on the upstream side of the structure takes sand out of the sediment budget → shore erosion along adjacent shorelines. Mostly, of course, on the lee side, but large structures may also cause (initial) erosion on the upstream side.
 - Loss of sand to deep water
 - Trapping of sand in entrance channels and outer harbours.

• Name the types of structure which may cause coastal erosion?

- The structures, which may cause coastal erosion:
 - Groins and similar structures perpendicular to the shore
 - Ports
 - Inlet jetties at tidal inlets and river mouths
 - Detached breakwaters

GROUP PRESENTATION

Topic 5. Definition, classification, allowed and prohibited activities in MPA. Analysis a case study about MPA of any country.

Group discussion

Divide into 3 groups and find out the Causes and solutions for coastal flooding

Causes and solutions for coastal flooding???

Group work

- Work individually in 5 minutes, point out several causes and solutions for coastal flooding
- Each group has 10 minutes to communicate and select the most effective solution.

Round-presentation

- Assign 1 speaker.
- Group's speaker has to present your findings in 3 minutes. Convince the class that your solution is top choice. Take note.
- Other members: comment the speaker. Take note.

CAUSES OF FLOODING

- Flooding is an even more severe phenomenon along low-lying coasts than coastal erosion. It appears very quickly and often covers huge areas. Coastal flooding causes extensive damage and very often loss of life.
- Flooding in estuaries and delta areas caused by river floods is also very important, but not covered in these guidelines
- Flooding only occurs in areas where the coast and the coastal hinterland are low relative to extreme water levels.

CAUSES OF FLOODING

- Extreme water levels:
 - Recurring events: normally occur as the result of the combined effect of tide, seasonal variations and meteorologically generated storm surge (e.g. by typhoons) together with the action of waves
 - Long-term trends: Sea level rise and subsidence may give an increased risk of flooding combined with recurring events ← normally not cause flooding by themselves, but they will increase the flood level

- Regulation or reclamation work in a tidal inlet or an estuary \rightarrow change the tidal regime and thus the flood levels in the estuary.
- The construction of dykes decreases the storage capacity in certain areas \rightarrow increased flood levels along the estuary
- Extensive cutting of mangrove areas \rightarrow change the flood conditions in the hinterland
- Long-term trends in sea level rise and subsidence → increase the risk of flooding in areas prone to naturally recurring flood events
- The extraction of groundwater, oil or gas... → Subsidence due to human interference in coastal areas

THANK YOU!