

Course Name: MODELLING THE MARINE ENVIRONMENT **Number of credits:** 3,5 ECTs

Period: Fall/spring semester

Cooordinator	Faculty of Marine Resources and Management
Credits	3,5 ECTs
Lecturers	Nguyen Ky Phung, Dang Thi Thanh Le
Level	BSc.
Host institution	Ho Chi Minh City University of Natural Resources and Environment
Course duration	1 semester (the classes will be scheduled in accordance with the
	university
	timetable)
New/revised	revised course

Summary

The course provides basic knowledge of modeling contaminants transmission processes in marine environments. In addition, the course introduces basic applications of modeling pollution processes in solving practical problems of marine pollution.

Target student audiences

BSc. students majoring in Marine Resources Management

Prerequisites

Required courses (or equivalents): NO

Aims and objectives

The main course objective is to equip students with knowledge of:

- The processes of the transmission of substances to the marine and ocean environment.
- Determing the marine environment problem and propose suitable solution.
- Basic skills to use model in simulating contaminants transmission processes in marine environment.
- Demonstrate active learning capacity

The Authentic Tasks:

The course provides basic knowledge of modeling pollutant transmission processes in marine environments.

General learning outcomes:

By the end of the course, successful students will:

Knowledge • Understanding the role of marine environment modeling

	 Presenting the basic knowledge of flow dynamics and hydrography, the basic knowledge of modeling of substance transmission in marine environment. Simulating the processes of substance transmission in marine environment. Analysis of natural systems and design of numerrical models Using basic models in simulating contaminants transmission processes in marine environment.
Comprehensive	• Presenting the basic knowledge of flow dynamics and hydrography, the basic knowledge of modeling of substance transmission in marine environment.
Application	• Simulating the processes of substance transmission in water
Analysis	Analysis of natural systems and design of numerical models
Synthesis	• Using basic models in simulating contaminants transmission processes in marine environment.

Overview of sessions and teaching methods

The course will make most of interactive and self-reflective methods of teaching and learning and, where possible, avoid standing lectures and presentations.

Learning methods • Video

- Video presentations
- Project Based Learning
- Literature review
- Brainstorming
- Puzzles
- Query
- Mind map
- Problem-based learning Team work

Course outline

Week	Topics
Week 1	Introduction to the Modeling and application
Week 2; 3&4	Dynamics currents and tides
Week 5,6,7, 8, 9	Process of substance transmission
&10	
Week 11, 12 &13	Modelling the marine environment and ocean
Week 14 &15	An introduction to model used in simulation marine and ocean
	environment process

Course Schedule

Topic 1 - Introdu	uction to the Modelling and application
Learning objectives	• Determing the marine environment problem and propose suitable solution.
	• Demonstrate active learning capacity
Learning outcomes	Understanding the role of marine environment modelingDemonstrate active learning capacity
Student deliverables	 Exercise: individual assignments Semi – Final examination Final assessment
Topic materials	Lecture:Lecture of Control of modeling of the marine environment
Outline	1.1. Introduction to the Modelling and application1.2. Numerical model1.3. Applications of the numerical model in the environment
Topic 2- Dynami	ics currents and tides (10% Update)
Learning objectives	 Determing the marine environment problems and propose suitable solution. The processes of the transmission of substances to the marine and ocean environments. Demonstrate active learning capacity
Learning outcomes	 Presenting the basic knowledge of flow dynamics and hydrography, the basic knowledge of modeling of substance transmission in marine environment. Simulating the processes of substance transmission in water Demonstrate active learning capacity
Student deliverables	 Exercise: individual assignments Semi – Final examination Final examination
Topic materials	Lecture: • Lecture of Control of modeling of the marine environment
Outline	2.1. Hydrodynamic Equation2.2. Some approximations in marine and ocean studies2.3. Theory of flow2.4. Ocean tides
Topic 3 - Proce	ss of substance transmission (10% Update)

Learning objectives	 Determing the marine environment problem and propose suitable solution. The processes of the transmission of substances to the marine and ocean environment Demonstrate active learning capacity 	
Learning outcomes	 Presenting the basic knowledge of flow dynamics and hydrography, the basic knowledge of modeling of substance transmission in marine environment. Simulating the processes of substance transmission in water Demonstrate active learning capacity 	
Student deliverables	 Exercise: individual assignments Semi – Final examination Final examination 	
Topic materials	Lecture: • Lecture of Control of modeling of the marine environment	
Outline	3.1. Equation of substance transmission3.2. Analytical solutions for some cases3.3. Advection and Diffusion3.4. The process of substance transmission for non-conservative substance	
Topic 4: Modelli	ng the marine environment and ocean (15% Update)	
Learning objectives	 Determing the marine environment problem and propose suitable solution. The processes of the transmission of substances to the marine and ocean environment Basic skills to use model in in simulating contaminants transmission processes in marine environment Demonstrate active learning capacity 	
Learning outcomes	 Presenting the basic knowledge of flow dynamics and hydrography, the basic knowledge of modeling of substance transmission in marine environment. Simulating the processes of substance transmission in water Analysis of natural systems and design of numerical models Demonstrate active learning capacity 	
Student deliverables	 Exercise: individual assignments Semi – Final examination Final examination 	
Topic materials	Lecture: Lecture of Control of modeling of the marine environment	
Outline	4.1. Computation method4.2. Application of the Finite Difference Method in some specific cases	

Topic 5- An int Update)	production to model used in simulation marine and ocean process (5%	
Learning objectives	 Determing the marine environment problem and propose suitable solution. The processes of the transmission of substances to the marine and ocean environment Basic skills to use model in in simulating contaminants transmission processes in marine environment Demonstrate active learning capacity 	
Learning outcomes	 Presenting the basic knowledge of flow dynamics and hydrography, the basic knowledge of modeling of substance transmission in marine environment. Simulating the processes of substance transmission in water Analysis of natural systems and design of numerical models Using basic models in simulating contaminants transmission processes in marine environment. Demonstrate active learning capacity 	
Student deliverables	 Exercise: individual assignments Semi – Final examination Final examination 	
Topic materials	Lecture: Lecture of Control of modeling of the marine environment	
Outline	5.1. Fundamental5.2. Several modeling applications in the simulation of substance transmission in marine and ocean environments	

Literature

Compulsory

[1]. Lecture of Modeling of the marine environment.

Recommended:

[1] Chapta S.C. Surface water-quality modeling. Waveland Press Inc., 2008

[2] Visscher A.D. Air dispersion modeling – Foundations and Applications. Wiley Publishing, 2014.

[3] Nihoul J.C.J., Modeles mathematiques et Dynamiques de l'environment, Ele, Liege, 1977.

[4] Mooers C.N.K., (editor), Coastal Ocean Prediction, AGU, Washington, 1999.

[5] Stewart R., Introduction to Physical Oceanography, Texas A&M University, 2002.

Course workload

The table below summarizes course workload distribution:

Activities	Learning outcomes	Assessment	Estimated workload (hours)
In-class activities (33,75	5 hours)		
Lectures	Understanding theories, concepts, methodology and tools	Class participation	12
Moderated in-class discussions	Understanding the basic knowledge of flow dynamics and hydrography, the basic knowledge of modelling of substance transmission in marine environment.	Class participation and preparedness for discussions	8
In-class assignments, homework assignment	Understanding the basic knowledge of flow dynamics and hydrography, the basic knowledge of modelling of substance transmission in marine environment.	Class participation and preparedness for assignments	6
Reading and discussion of assigned papers for preparation for lectures	Familiarity with and ability to critically and creatively discuss key concepts, tools and methods as presented in the literature	Class participation, creative and active contribution to discussion	7,75
Independent work (67,	5 hours)		
Home work and Exercise	Ability to interpret data, analyze objects and use concepts, tools, and methods, and equations to solve problems.	Quality of individual assignments	67,5
Total			101,25

Course Assignments

Course assignments will constitute a multi-part project:

- Assignment #1 -(in-class) : will help students understand the basic knowledge of dynamics currents and tides.
- Assignment #2 (home work): will help students understand the basic knowledge of flow dynamics and hydrography
- Assignment #3 –(home work): will help students understand the processes of the transmission of substances to the marine and ocean environment
- Assignment #4 (mostly in-class): Understanding the basic knowledge of flow dynamics and hydrography, the basic knowledge of modelling of substance transmission in marine environment.

Grading

The students' performance will be based on the following:

Assessment	 Progress assessment (30%): Exercise (15%): Homework (15%):
	 Final assessment (60%): Semi- Final examination (10%) Final examination (50%)
Evaluation	A $(8,5-10)$ B $(7,0-8,4)$ C $(5,5-6,0)$

C (5,5 - 6,9) D (4,0 - 5,4)