TOPIC 2 WAVES

- Part l: Introduction to Ocean Waves
- Part 2: Linear Wave Theory
- Part 3: Nearshore Wave Transformation

Learning Outcomes

Upon completion of this topic, students should be able:

- To assess wave refraction effect at near-shore
- To perform wave refraction analysis

Wave AdVance

Wave front - A curve in the horizontal plane through adjacent crest points.
Wave orthogonal/ray - Path perpendicular to the wave fronts at every point.

WaVE Refraction

Wave refraction is the bending effect of wave crest (wave front) in order to align with bottom contours as waves are moving over different depths.

The wave ray becomes more perpendicular to the shore.

Incident Wave

Oblique Waves Refracting across a Uniformly Sloped Shelf

© 2021 UNIVERSITI TEKNOLOGI PETRONAS
All rights reserved.
No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the permission of the copyright owner.

SNELL'S LAW

Snell's Law:

$$
\frac{C}{C_{o}}=\tanh \frac{2 \pi d}{L}=\frac{\sin \alpha}{\sin \alpha_{o}}=\frac{L}{L_{o}}
$$

Table C-1 (Shore Protection Manual, 1984)

$\rightarrow \frac{\sin \theta}{\sin \theta_{o}}=\frac{C}{C_{o}}=\frac{L}{L_{0}}=\tanh \frac{2 \pi d}{L}$

d/L。	d/L	$2 \pi \mathrm{~d} / \mathrm{L}$	$\begin{aligned} & \text { TANH } \\ & 2 \pi \mathrm{~d} / \mathrm{L} \end{aligned}$	$\begin{aligned} & \operatorname{SINH}_{1} \\ & 2 \pi d / L \end{aligned}$	$\begin{aligned} & \cosh \\ & 2 \pi d / L \end{aligned}$	$\mathrm{H} / \mathrm{H}_{\mathrm{O}}$	K	$4 \pi \mathrm{~d} / \mathrm{L}$	$\begin{aligned} & \operatorname{SINH} \\ & 4 \pi d / L \end{aligned}$	$\begin{aligned} & \cosh \\ & 4 \pi d / L \end{aligned}$	n	$\mathrm{C}_{\mathrm{G}} / \mathrm{c}_{0}$	M
. 3300	. 3394	2.133	. 9723	4.159	4.277	. 9583	. 2338	4.265	35.58	35.59	. 5599	. 54.4	5.220
. 3310	. 3403	2.138	. 9726	4.164	4.301	. 9586	. 2325	4.277	35.99	36.00	. 5594	. 5441	5.217
. 3320	. 3413	2.144	. 9729	4.209	4.326	. 9589	. 2312	4.288	36.42	36.43	. 5589	. 5438	5.214
. 3330	. 3422	2.150	. 9732	4.234	4.350	. 9592	. 2299	4.300	36.84	36.85	. 5584	. 5434	5.210
. 3340	. 3431	2.156	. 9735	4.259	4.375	. 9595	. 2286	4.311	37.25	37.27	. 5578	. 5431	5.207
. 3350	. 3440	2.161	. 9738	4.284	4.399	. 9598	. 2273	4.323	37.70	37.72	. 5573	. 5427	5.204
. 3360	. 3449	2.167	. 9747	4.310	4.424	. 9601	.2260	4.335	38.14	38.15	. 5568	. 5424	5.201
. 3370	. 3459	2.173	. 9744	4.336	4.450	. 9604	. 2247	4.346	38.59	38.60	. 5563	. 5421	5.198
. 3380	. 3468	2.179	. 9747	4.361	4.474	. 9607	. 2235	4.358	39.02	39.04	. 5558	. 5417	5.194
. 3390	. 3477	2.185	. 9750	4.388	4.500	. 9610	. 2222	4.369	39.48	39.1.9	. 5553	.5414	5.191
. 3400	. 3468	2.190	. 9753	4.413	4.525	. 9613	. 2210	4.381	39.95	39.96	. 55448	. 5411	5.188
. 3410	. 3495	2.196	. 9756	4.439	4.550	. 9615	.2198	4.392	40.40	40.47	.5544	. 5408	5.185
. 3420	. 3504	2.202	. 9758	4.466	4.576	. 9618	. 2185	4.404	40.87	40.89	. 5539	. 5405	5.182
. 3430	. 3514	2.208	. 9761	4.492	4.602	. 9621	. 2173	4.416	42.36	41.37	. 5534	. 5402	5.179
. 3440	. 3523	2.214	. 9764	4.521	4.630	. 9623	.2160	4.427	4.85	41.84	. 5529	. 5399	5.176
. 3450	. 3532	2.220	. 9767	4.547	4.656	. 9626	. 2148	4.439	42.33	42.34	. 5524	. 5396	5.173
. 3460	. 3542	2.225	. 9769	4.575	4.682	. 9629	.2136	4.451	42.83	42.84	. 5519	. 5392	5.171
. 3470	. 3551	2.231	. 9772	4.602	4.709	. 9632	. 2224	4.462	43.34	43.35	. 5515	. 5389	5.168
. 3480	. 3560	2.237	. 9775	4.629	4.736	. 9635	. 2111	4.474	43.85	43.86	. 5510	. 5386	5.165
. 3490	.3570	2.243	. 9777	4.657	4.763	. 9638	. 2099	4.486	44.37	44.40	. 5505	. 5383	5.162
. 3500	. 3579	2.249	. 9780	4.685	4.791	. 9640	. 2087	4.498	44.89	44.80	. 5501	. 5380	5.159
. 3510	. 3588	2.255	. 9782	4.713	4.818	. 9643	. 2076	4.509	45.42	45.43	. 5496	. 5377	5.157
. 3520	. 3598	2.260	. 9785	4.741	4.845	. 9646	2064	4.521	45.9	45.96			15

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

Intensity of Wave Refraction

Outp

The amount of reduction or amplification of waves due to refraction depends on:

- bathymetry
- the initial angle of approach
- wave period

Wave Refraction

(a)

(b)

Where there are points or promontories projecting into the sea, wave fronts on both sides turn toward the point. A greatly increased amount of wave energy will be focused toward the point, and will tend to wear it away over time.

Wave Energy Distribution

Equal distribution of wave energy along the shoreline

Refraction by a submarine ridge

Converging orthogonal energy

- Wave energy is concentrated due to the submarine ridge
- $\mathrm{B}_{\mathrm{o}}>\mathrm{B}$, therefore $\mathrm{K}_{\mathrm{r}}=\left(\mathrm{B}_{\mathrm{o}} / \mathrm{B}\right)^{0.5}>1.0, \mathrm{H}>\mathrm{H}_{\mathrm{o}}$

Refraction by a submarine canyon

- Wave energy is diverted due to the submarine canyon
- $\mathrm{B}_{\mathrm{o}}<\mathrm{B}$, therefore $\mathrm{K}_{\mathrm{r}}=\left(\mathrm{B}_{0} / \mathbf{B}\right)^{0.5}<\mathbf{1 . 0}, \mathrm{H}<\mathrm{H}_{\mathrm{o}}$

Refraction along an irregular shoreline

- Headland \rightarrow submarine ridge \rightarrow converging rays $\rightarrow \mathrm{H}>\mathrm{H}_{\mathrm{o}}$
- Bay \rightarrow submarine canyon \rightarrow diverging rays $\rightarrow \mathbf{H}<\mathrm{H}_{\mathrm{o}}$
- Wave heights are higher at a headland than in a bay

WaVe Refraction

https://youtu.be/E9UJjdITQQI

REFRACTION ANALYSIS

Wave refraction analysis provides:

- Pattern of wave transformation from deepwater to shallow water.
- Determination of the near-shore wave properties and the energy distribution along the coast.

Refraction Coefficient

Consider the principle of energy conservation, the power

© 2021 UNIVERSITI TEKNOLOGI PETRONAS
All rights reserved.
No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the permission of the copyright owner.

Refracted Wave Height

Refracted wave height, H is given by

$$
\frac{H}{H_{o}}=K_{s} K_{r}
$$

$H_{\circ}=$ Refracted deepwater wave height
$K_{s}=$ Shoaling coefficient
$K_{r}=$ Refraction coefficient

$$
K_{s}=\frac{H}{H_{o}{ }^{\prime}}
$$

$K_{r}=\sqrt{\frac{B_{o}}{B}}=\sqrt{\frac{\cos \alpha_{o}}{\cos \alpha}}=\left(\frac{1-\sin ^{2} \alpha_{0}}{1-\sin ^{2} \alpha}\right)^{\frac{1}{4}}$

A wave in deep water has the following characteristics:

$$
H_{0}=3 \mathrm{~m}, T=8 \mathrm{~s}, \mathrm{~m}=0.02 \text { and } \alpha_{\circ}=30^{\circ}
$$

Calculate refracted wave height in 10 m of water depth.

SOLUTION

$$
\begin{gathered}
\frac{H}{H_{o}}=K_{s} K_{r} \\
K_{s}=\frac{H}{H_{o}{ }^{\prime}} \\
\frac{C}{C_{o}}=\tanh \frac{2 \pi d}{L}=\frac{\sin \alpha}{\sin \alpha_{o}}=\frac{L}{L_{o}} \\
K_{r}=\sqrt{\frac{B_{o}}{B}}=\sqrt{\frac{\cos \alpha_{o}}{\cos \alpha}}=\left(\frac{1-\sin ^{2} \alpha_{0}}{1-\sin ^{2} \alpha}\right)^{\frac{1}{4}}=\frac{H_{o}^{\prime}}{H_{o}}
\end{gathered}
$$

Linear Wave Theory - Equations

© 2021 UNIVERSITI TEKNOLOGI PETRONAS
All rights reserved.
No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the permission of the copyright owner.

Table C-1 (SPM, PP. C-8)

Table C-1. Continued.

d / L_{0}		$2 \pi \mathrm{~d} / \mathrm{L}$	$\begin{aligned} & \text { TANH } \\ & 2 \pi d / L \end{aligned}$	$\underset{2 \pi \mathrm{~d} / \mathrm{L}}{\operatorname{SDN}}$	$\begin{aligned} & \cos H \\ & 2 \pi \mathrm{~d} / \mathrm{L} \end{aligned}$	$\mathrm{H} / \mathrm{H}_{0}$	K	$4 \pi d / L$	$\begin{aligned} & \operatorname{siNH} \\ & 4 \pi d / L \end{aligned}$	$\begin{aligned} & \cos H \\ & 4 \pi d / L \end{aligned}$	${ }^{n}$	C_{G}	3
.1000	.1410	. 8858	. 7093	1.006	1.4187	. 9327	. 7049	1.772	2.855	3.025	. 8103	. 5747	9.808
$d / L=$? $(S P M$, Table C-1)			$\tanh \frac{2 \pi d}{L}=\frac{\sin \alpha}{\sin \alpha_{o}}=\frac{L}{L_{o}}$			$K_{s}=\frac{H}{H_{o}{ }^{\prime}}$			$\frac{H}{H_{o}}=K_{s} K_{r}$				
$L=10 / 0.1410=70.92 \mathrm{~m}$			$\begin{aligned} & \text { Determine } \alpha \text { : } \\ & \sin \alpha / \sin 30^{\circ}=0.7093 \\ & \alpha=20.77^{\circ} \end{aligned}$						$\mathrm{H}=0.9327 \times 0.9622 \times 3=\underline{2.69 \mathrm{~m}}$				
			$K_{r}=\sqrt{ }$	$=\sqrt{\frac{\cos }{\cos }}$									
			$\begin{aligned} & \text { Determine } \\ & \mathrm{K}_{\mathrm{r}}=[\cos \end{aligned}$	$\begin{aligned} & K_{r} \\ & 30^{\circ} / \cos 20 \end{aligned}$	$\left.0.77^{\circ 0}\right]^{0.5}=$	$=0.9622$							

Learning Outcomes

At the end of this lesson, students should be able to:

- understand the fundamental of wave reflection
- estimate the reflected wave height from a sloping structure.

WaVE Reflection

Reflection in front of the seawall at Port Cawl, UK
When a wave hits a vertical, impermeable, rigid surface wall, ALL of the wave energy will essentially reflect from the wall.

Incident \& Reflected Waves

Wave motion in front of a perfectly reflecting vertical wall subjected to monochromatic waves moving in a direction perpendicular to the barrier can be determined by superimposing two waves with identical wave numbers, periods and amplitudes but traveling in opposite directions.

The water surface of the incident wave is given to a linear approximation by

$$
\eta_{i}=\frac{H_{i}}{2} \cos \left(\frac{2 \pi x}{L}-\frac{2 \pi t}{T}\right)
$$

and the reflected wave by

$$
\eta_{r}=\frac{H_{r}}{2} \cos \left(\frac{2 \pi x}{L}+\frac{2 \pi t}{T}\right)
$$

wall

WaVE Reflection

Consequently, the water surface is given by the sum of η_{i} and η_{r}.
Since $H_{i}=H_{r}$,

$$
\eta=\eta_{i}+\eta_{r}=\frac{H_{i}}{2}\left[\cos \left(\frac{2 \pi x}{L}-\frac{2 \pi t}{T}\right)+\cos \left(\frac{2 \pi x}{L}+\frac{2 \pi t}{T}\right)\right]
$$

which reduces to

$$
\eta=H_{i} \cos \frac{2 \pi x}{L} \cos \frac{2 \pi t}{T}
$$

This equation represents the water surface for a standing wave or clapotis which is periodic in time having a maximum height of $2 \mathrm{H}_{i}$

Standing Waves (Clapotis) System

Barrier at $\mathrm{X}=0$
(no flow across barrier)

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

MaKing Standing Waves

Clapotis Waves

Reflection Coefficient

The degree of wave reflection is defined by the reflection coefficient, Cr

$$
C_{r}=\frac{H_{r}}{H_{i}}
$$

where Hr is the reflected wave heights, and Hi_{i} is the incident wave height

$$
\begin{array}{lll}
C_{r}>1 & \Rightarrow \text { Total reflection } \\
0<C_{r}<1 & \Rightarrow & \text { Partial reflection } \\
C_{r}=0 & \Rightarrow & \text { No reflection }
\end{array}
$$

TOTAL REFLECTION

$\mathrm{Cr}=1$:

- At nodes, water particle motions are horizontal and all of the wave energy is kinetic energy.
- At antinodes, water particle motions are vertical and all of the wave energy is potential energy.

PaRTIAL REFLECTION

(b)
$C_{r}<1$:

- When the reflection coefficient is less than unity, the water surface envelope develops.
- As the reflection coefficient decreases toward zero, the water surface profile and water particle path changes toward the form of a normal progressive wave.

IRIbARREN NUMbER

The reflection coefficient for a reflective object depends on the slope angle θ, surface roughness, porosity and the incident wave steepness Hi / L.

Wave reflection is a function of the Iribarren number (Battjes 1974):

$$
I_{r}=\frac{\tan \theta}{\sqrt{H_{i} / L_{o}}}=\frac{m}{\sqrt{H_{i} / L_{o}}}
$$

$\vartheta=$ the angle the slope from the horizontal
$H_{i}=$ the local incident wave height
$L_{0}=$ the deepwater wavelength

Reflection Coefficient

The reflection coefficients for most structure forms can be given by the following:

$$
C_{r}=\frac{a I_{r}^{2}}{b+I_{r}^{2}}
$$

where the values of coefficients a and b depend primarily on the structure geometry and the wave type (i.e. monochromatic or irregular).

Table II-7-1 Wave Reflection Equation Coefficient Values Structure		
Structure	a	b
Plane slope-monochromatic waves	1.0	5.5
Plane slope-irregular waves	1.1	5.7
Rubble-mound breakwaters ${ }^{1}$	0.6	6.6
Dolos-armored breakwaters - monochromatic waves	0.56	10.0
Tetrapod-armored breakwaters - irregular waves	0.48	9.6
${ }^{1}$ This is an average conservative value. Seelig and Ahrens (1981) recommend a range of values for a and b that depend on the		
number of stone layers, the relative water depth (d / L), and the ratio of incident wave height to breaker height.		

© 2021 UNIVERSITI TEKNOLOGI PETRONAS
All rights reserved.
No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the permission of the copyright owner.

Problem 1

A wave in deepwater has a height of 1.8 m and a period of 6 s . It propagates towards shore without refracting or diffracting to reflect from a rubble-mound breakwater located in water 5 m deep. The breakwater slope os 1:1.75. Find the height of the reflected wave.

SOLUTION

Given: $H_{0}{ }^{\prime}=1.8 \mathrm{~m} ; \quad T=6 \mathrm{~s} ; \quad d=5 \mathrm{~m} ; \quad \vartheta=\tan ^{-1}(1 / 1.75)=29.74^{\circ}$
$L_{0}=g T^{2} / 2 \pi=56.21 \mathrm{~m}$
d/ $L_{0}=5 / 56.21=0.0890$
From Table C-1: $d / L=0.1313$ (transitional water); $H / H_{0}{ }^{\prime}=0.9433$
[Note: $H=$ the local wave height at $d=5 \mathrm{~m}$]
$H=0.9433 \times 1.8=1.6979 \mathrm{~m}=1.7 \mathrm{~m}$
$I_{r}=\frac{\tan \theta}{\sqrt{H_{i} / L_{o}}}=\frac{m}{\sqrt{H_{i} / L_{o}}} \quad I_{r}=\frac{\tan 29.7^{\circ}}{\sqrt{1.70 / 56.2}}=3.28$
$a=0.6$ and $b=6.6$ (from Table II-7-1), $\quad C_{r}=\frac{a I_{r}^{2}}{b+I_{r}^{2}}$

$$
C_{r}=\frac{0.6(3.28)^{2}}{6.6+(3.28)^{2}}=0.37
$$

the reflected wave height $H_{r}=C, H_{i}=0.37(1.70)=0.63 \mathrm{~m}$.

SOLUTION

$$
C_{r}=\frac{a I_{r}^{2}}{b+I_{r}^{2}}
$$

Table II-7-1 Wave Reflection Equation Coefficient Values Structure		
Structure	a	b
Plane slope-monochromatic waves	1.0	5.5
Plane slope-irregular waves	1.1	5.7
Rubble-mound breakwaters ${ }^{1}$	0.6	6.6
Dolos-armored breakwaters - monochromatic waves	0.56	10.0
Tetrapod-armored breakwaters - irregular waves	0.48	9.6
${ }^{1}$ This is an average conservative value. Seelig and Ahrens (1981) recommend a range of values for a and b that depend on the		
number of stone layers, the relative water depth (d / L), and the ratio of incident wave height to breaker height.		

© 2021 UNIVERSITI TEKNOLOGI PETRONAS
All rights reserved.
No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the permission of the copyright owner.

Reflection From Beaches

When the reflecting slope becomes very flat, the incident wave will break on slope. This causes increase in energy dissipation and decrease in reflection coefficient. Thus, beaches are generally very efficient wave absorbers, particularly for shorter period wind waves.

Seelig and Ahrens (1981) suggest that $a=0.5$ and $b=5.5$ be used for beaches. Since the slope angles are small, the Iribarren number Ir will be relatively small, yielding relatively low reflection coefficients.

$$
C_{r}=\frac{a I_{r}^{2}}{b+I_{r}^{2}}
$$

Based on a compilation of measurements from several sources, Seelig and Ahrens (1981) developed the curves used to obtain a high estimate of C_{r} for:
(a) smooth slope
(b) sand beaches
(c) rubble-mound breakwaters

The curves show C_{r} decreases as either
(a) the wave steepness increases,
or
(b) the slope angle ϑ decreases

PROBLEM 2

GIVEN: An incident wave with period $T=10$ seconds and a wave height $H_{1}=2$ meters (6.56 feet) impinges on a slope.

PIND:
(a) The height of the wave reflected from an impermeable slope with cot $\theta=$ 5.0 .
(b) Compare the reflection coefficient obtained in (a) above with that obtained for a beach with $\cot \theta=50$.

Problem 2: Solution

SOLJTION: Calculate
(a)

$$
L_{0}=\frac{g T^{2}}{2 \pi}=\frac{9.8(100)}{2 \pi}=156 \mathrm{~m}(512 \mathrm{ft})
$$

and from equation (2-86)

$$
I_{r}=\frac{\tan \theta}{\sqrt{H_{i} / L_{o}}}=\frac{1}{\cot \theta \sqrt{H_{i} / L_{o}}} \quad \xi=\frac{1.0}{5.0 \sqrt{2 / 156}}=1.77
$$

The reflection coefficient from curve A for plane slopes in Figure 2-65 is $\chi=0.29$; therefore, the reflected wave height is $\mathbb{R}_{\mathrm{r}}=0.29(2)=0.58$ meter (1.90 feet).
(b) For a 1 on 50 sloped beach,

$$
\xi=\frac{1.0}{50.0 \sqrt{2 / 156}}=0.18
$$

from curve B in Figure $2-65, x<0.01$ for the beach. The 1 on 50 beach slope reflects less wave energy and is a better wave energy dissipater than © 2021 UnIVERSTTI TEKNOLO the 1 on 5 structure slope.
© 2021 UNIVERSITI TEKNOLOGI PETRONAS All rights reserved.
No part of this document may be reproduced, stored in a retrieval system or t

© 2021 UNIVERSITI TEKNOLOGI PETRONAS All rights reserved.
No part of this document may be reproduced, stored in a retrieval system or t

PROBLEM 3

GIVEN: Waves with a height $H_{i}=3.0$ meters (9.84 feet) and a period $T=7$ geconds are normally incident to a rubble-mound breakwater with a slope of 1 on $2(\cot \theta=2.0)$.

FIND: A high estimate (upper bound) of the reflection coefficient.

Solution - Problem 3

SOLUTION: Calculate

$$
\mathrm{L}_{\mathrm{o}}=\frac{\mathrm{gT}^{2}}{2 \pi}=\frac{9.8(7.0)^{2}}{2 \pi}=76.4 \mathrm{~m}(251 \mathrm{ft})
$$

and from equation (2-86)

$$
\xi=\frac{1.0}{2.0 \sqrt{3.0 / 76.4}}=2.52
$$

From curve C in Figure $2-64, X=0.29$ which is the desired upper bound on x. The actual reflection coefficient depends on wave transmission, fnternal dissipation, overtopping, and many other factors. Techniques described in Seellg and Ahrens (1981) and laboratory tests by Seelig (1980) should be used to obtain better wave reflection coefficient estimates for breakwaters.

All rights reserved.
No part of this document may be reproduced, stored in a retrieval system or t

THANK YOU

Get Connected with

www.utp.edu.my | \ddagger 逢 UTPOfficial

