These lecture materials are for the Marine Coastal and Delta Sustainability for Southeast Asia (MARE) (Project No. 610327-EPP-1-2019-1-DE-EPPKA2-CBHE-JP).

This project has been funded with support from the European Commission. This publication reflects the views only of the authors, and the Commission cannot be made responsible for any use which may be made from the information contained herein.

TOPIC 3 TIDE

UTP

Upon completion of this course, students should be able to:

- 1. Evaluate the properties of offshore and near shore waves and establish design wave specification.
- 2. Assess currents and tidal processes.
- 3. Formulate sediment budget and perform shoreline evolution analysis.

Upon completion of this topic, participants should be able:

- To assess tidal effects on the ocean water.
- To understand different tidal levels.

WHAT ARE TIDES?

- Very long-period waves moving through the oceans in response to the forces exerted by the moon and sun.
- Originated in the oceans and progress towards coastlines.
- The regular rise and fall of the sea levels causing change in current speed and direction.

Name	Typical Periods	Wave lengths	Forcing Mechanism
Ripples	< 0.2 s	10 ⁻² m	wind on sea surface
Sea	0.2 - 9 s	10s of m	
Swell	9 - 30 s	100s of m	"
Internal	min to several hrs	1 - 300 m	current shear on stratification
Planetary and Topographic Tsunamis	hours to days	100-1000s km	bathymetry/atmospheric pressure
Tsunamis	15 mm to 1 m	lew loos kill	seismic, ianusiide, meteorite impact
Tides	several hrs	100s -1000s km	gravitational (moon and sun mainly)

- High water Maximum height reached by a rising tide
- Low water Maximum height reached by a falling tide

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.

TIDAL CYCLE

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.

Because of its long period, the tide propagates as a shallow water wave even over the deepest parts of the ocean.

L >> d; $d/L < 0.05 \implies$ Shallow water

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.

FORMATION OF TIDES

• Tides result from the gravitational attraction of the sun and moon on the oceans of the earth.

- Newton's law of universal gravitation: The greater the mass of the objects and the closer they are to each other, the greater the gravitational attraction between them.
- The moon has the biggest influence (about twice the sun's gravitational force on the oceans) because it is close. The sun tugs on the oceans too, but since it's so far away, it has less influence than the moon.

GRAVITY & INERTIA FORCES

C QA INTERNATIONAL

Low tide

- Gravity: The major force creating tides
- Inertia (counterbalance gravity): Caused by centrifugal force
- Gravity and inertia created the two tidal bulges on the earth.

TIDE GENERATION

2 forces operating on the water envelope: Gravitational force (F_g) & Centrifugal force (F_i)

Most area, experience two high tides and two low tides every lunar day (Note: Solar day – 24 hours; Lunar day – 24 hours 50 minutes)

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.

Solar Day vs Lunar Day

© 2007 Thomson Higher Education

	Christian Calendar	Lunar Calendar
Based on	Rotation of the Sun-Earth system	Rotation of the Moon-Earth system
Day	Solar day	Lunar day
No. of hours in a day	24 hr	24 hr 50 min
No. of days in a month	30.42 days	29.53 days
No of days in a year	30.42 x 12 = 365 days	29.53 x 12 = 354.36 days

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.

When the moon is in the plane of the equator, an observer traveling along a constant latitude would experience 2 tides of equal height height per day.

DAILY INEQUALITY

UTP

When the moon is in the plane of the equator, an observer traveling along a constant latitude would experience 2 tides of equal height height per day.

When the moon has a North/South declination with respect to the equator, he/she would experience 2 tides day of unequal height.

Daily inequality is the difference between two successive low or high tides.

© 2021 UNIVERSITI TEKNOLOGI PETRONAS All rights reserved.

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.

Tide propagation and the amplitude are influenced by:

- nearshore hydrography
- bottom friction
- the rotation of the earth (Coriolis acceleration)
- resonance determined by the shapes and depths of the ocean basins.

Path Without Coriolis Effect

Path With Coriolis Effect

DIURNAL & SEMIDIURNAL TIDES

Diurnal Tides (Daily Tides)

Semidiurnal Tides (Half Daily Tides)

- One high and one low tide per day
- These have periods close to 24 hours

- Two highs and two lows daily tides are about the same height
- These have periods close to 12 hours

MIXED TIDES

Mixed Tides

- Variable height between lows and highs (a large inequality in the vertical range)
- Mixture of semidiurnal and diurnal

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.

Semidiurnal Tides

Two high and low waters each day

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.

DIURNAL TIDES

One high and low waters each day

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.

Mixed Predominantly Semidiurnal Tides

Two high and low waters each day during most of the time, only one high and low water during neap tides

All rights reserved.

One dominant high and low water each day, two high and low waters during neap tide

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.

One dominant high and low water each day, two high and low waters during neap tide

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.

OCCURRENCE OF TIDES

© 2021 UNIVERSITI TEKNO All rights reserved.

OCCURRENCE OF TIDES

Semidiurnal tides
Diurnal tides
Mixed semidiurnal tides

OCCURRENCE OF TIDES

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

Moon's Synchronous Orbit

Seen from above the earth's North Pole, the moon's orbit carries it counterclockwise around the earth once every 29.5 days.

As it follows its orbit, the moon itself also rotates counterclockwise and keeps the same side facing the earth.

Spring Tides

When the sun, moon and earth are all aligned (occurred during the new moon and the full moon), the gravitational pull of the moon and sun are combined, resulting the lunar tidal bulges added on top of the solar tidal bulges. At these times, the high tides are very high and the low tides are very low. This is known as a spring tides which occur twice a month.

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

NEAP TIDES

When the moon is in the first and third quarters, the sun and moon work at right angles, causing the bulges to cancel each other. This result in a smaller difference between high and low tides and is known as a neap tides. Neap tides are especially weak tides.

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

ANIMATION: SPRING & NEAP TIDES

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.

PROBLEM

- c. The possible dates for spring and neap tides
- d. Maximum tidal range

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.

TIDAL DATUM

- A tidal datum is a standard elevation defined by a certain phase of the tide.
- Tidal datum are used as references to measure local water levels.
- Coastal water elevation are referred to a variety of tidal datum e.g. MSL (mean sea level), ACD (Admiralty Chart Datum), etc.

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

TIDE LEVELS

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.

https://en.wikipedia.org/wiki/Tide

Term	Definition
High water/tide	Highest level reached at a place by the water surface in one tidal cycle
Low water/tide	Lowest level reached at a place by the water surface in one tidal cycle
Mean high water	The average of all the high water level at a place over a period
Mean low water	The average of all the low water level at a place over a period
Mean tide level/ half-tide level	Average of MHW and MLW within a certain period at a place
Mean water level (MWL)	The average of all hourly water level over the available period of record
Mean sea level (MSL)	Average height of the surface of sea at a tide station for all stages of tide over 19 years period, usually determined by hourly height reading measured from a fixed pre-determined reference level.

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.

Term	Definition	
Mean high water spring (MHWS)	Average height of the high waters of spring tides at a place over a period	
Mean high water neap (MHWN)	Average height of the high waters of neap tides at a place over a period	
Mean low water spring (MLWS)	Average height of the low waters of spring tides at a place over a period	
Mean low water neap (MLWN)	Average height of the low waters of neap tides at a place over a period	

© 2021 UNIVERSITI TEKNOLOGI PETRONAS All rights reserved.

* HTL - Half-tide level/ Amplitude

TIDE LEVELS

Term	Definition	
Mean Higher High Water (MHHW)	Average height of higher high waters at a place over a 19-year period.	
Mean Lower Low Water (MLLW)	Average height of lower low waters at a place over a 19-year period.	

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.

Term	Definition
Lowest Astronomical Tide (LAT)	The lowest tidal level which can be predicted to occur under average meteorological conditions and under any combination of astronomical condition
Highest Astronomical Tides (HAT)	The highest tidal level which can be predicted to occur under average meteorological conditions and under any combination of astronomical condition

- LAT is commonly used for hydrographic charts to minimize the possibility of navigators running aground at low tide.
- Land elevations are usually referenced to MSL so care must be taken in combining topographic and hydrographic.

LEVEL CONVERSION

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.

LEVEL CONVERSION

Land surveying chart

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.

PROBLEM

MSL

ACD

Sea bottom

If MSL = 2 m above ACD, determine the water depth at A.

All levels in meters ACD

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.

PROBLEM

	U'	ΓР
--	----	----

Tidal levels at Port Dickson:			
LAT = 0.00 m ACD			
MLWS = 0.26 m ACD			
MLWN = 1.09 m ACD			
MSL = 1.50 m ACD			
MHWN = 1.91 m ACD			
MHWS = 2.74 m ACD			
HAT = 3.40 m ACD			

Find:

- a. MHW and MLW
- b. Mean neap & mean spring ranges
- c. Mean range

SOLUTIONS:

a. MHW = (1.91 + 2.74)/2 = 2.33 m ACD

MLW = (0.26 + 1.09)/2 = 0.68 m ACD

b. Mean neap range = 1.91 - 1.09 = 0.82 m

Mean spring range = 2.74 – 0.26 = 2.48 m

c. Mean range = 2.33 – 0.68 = 1.65 m

or (2.48 + 0.82)/2 = 1.65 m

- A long record (should be 19 years long) of the tide measured on a continuous basis by a tide gauge is needed to analyzed and then predict the tide at a particular location.
- The tidal elevation η above a selected datum can be given by

Tidal ratio determines the importance of diurnal and semi-diurnal harmonics.

$$F = \frac{K_1 + O_1}{M_2 + S_2}$$

Maximum Tide Level:

Summation of the amplitudes of the tidal harmonics to the mean

water level, Z_o. © 2021 UNIVERSITI TEKNOLOGI PETRONAS All rights reserved.

Constituent	Description
K ₁	Soli-Lunar constituent – Diurnal tides
0 ₁	Main-Lunar constituent – Diurnal tides
M ₂	Main-Lunar constituent – Semi-diurnal tides
S ₂	Main-Solar constituent – Semi-diurnal tides

F	Tidal form	
0.00 – 0.25	Semi-diurnal tide	
0.25 – 1.50	Mixed, Predominantly Semidiurnal tide	
1.50 - 3.00	Mixed, Predominantly Diurnal tide	
> 3.00	Diurnal tide	

Max tide level = $M_2 + S_2 + K_1 + O_1 + Z_2$

TIDAL PREDICTIONS

Classify the form of tide at Harbour X.

Constituent	Period (h)	Amplitude (cm)
κ ₁	23.93	31
O ₁	25.83	26
M ₂	12.42	45
S ₂	12.00	10

SOLUTION

Constituent	Period (h)	Amplitude (cm)
Κ ₁	23.93	31
O ₁	25.83	26
M ₂	12.42	45
S ₂	12.00	10

$$F = \frac{K_1 + O_1}{M_2 + S_2} = \frac{23.93 + 25.83}{12.42 + 12.00} = 2.04$$

F	Tidal form
1.50 – 3.00	Mixed, Predominantly Diurnal tide

TIDE TABLE

- The equation can be used to **predict future tide levels** at the location where the analyzed record is measured.
- The predicted results are published annually by National Hydrographic Centre for selected ports – Tide Table.
- Data are presented in terms of the elevation (Above Admiralty Chart Datum, ACD) and time of high and low tide levels.
- **Does not include meteorological effects** that may be active at a particular time.

LOCATION OF STANDARD PORTS IN MALAYSIA

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.

TIDE TABLE

MON

2005 5.1

TUE

2224 1.4

Pelabuhan Klang, Selangor Darul Ehsan

Tide Table April 2019													
Date 1	Time 0404 1018	M 3.7 1.9	Date	Time 0223 0814	M 0.8 4.7	Date 17	Time 0424 1044	M 4.5 1.0	Date 25	Time 0323 0915	M 1.5 4.1		
MON	1621 2239	4.1 1.6	TUE	1421 2034	1.0 4.9	WED	1654 2321	5.0 1.0	THUR	1515 2123	1.9 4.1		
2 TUE	0441 1054 1657 2315	4.1 1.5 4.4 1.4	10 WED	0252 0843 1449 2103	1.0 4.5 1.2 4.6	18	0516 1134 1741	4.8 0.7 5.3	26	0347 0947 1550 2201	1.9 3.9 2.2 3.73	Pelabu Standa	
3 WED	0513 1127 1731 2349	4.3 1.2 4.7 1.2	11	0323 0915 1522 2135	1.3 4.3 1.5 4.3	19	0008 0600 1216 1822	0.7 5.0 0.5 5.5	27 SAT 0	0422 1042 1657 2319	2.2 3.6 2.5 3.3		
4 THUR	0544 1158 1803	4.5 0.9 4.9	12 FRI	0400 0954 1605 2218	1.6 4.0 1.9 4.0	20 SAT 0	0048 0639 1253 1858	0.6 5.0 0.5 5.5	28 SUN	0533 1244 2007	2.5 3.5 2.5	Teluk Kuah Kuala Kedah	
5 FRI •	0022 0614 1229 1834	1.0 4.7 0.7 5.0	13	0453 1100 1728 2343	2.0 3.8 2.2 3.7	21 SUN	0125 0716 1327 1932	0.5 5.0 0.7 5.4	29	0202 0819 1427 2117	3.4 2.5 3.8 2.2	Butter Kuala Lumut Bagan Pelabu	
6	0053 0643 1258 1905	0.9 4.8 0.7 5.1	14 SUN	0635 1308 1942	2.2 3.8 2.2	22 MON	0158 0751 1358 2003	0.6 4.9 0.9 5.2	30 TUE	0314 0923 1528 2201	3.6 2.2 4.1 1.8	Perma Port D Kuala Tanjur Kuala	
7	0124 0715 1326 1935	0.8 4.8 0.7 5.1	15 MON	0202 0830 1445 2115	3.7 1.9 4.1 1.8	23 TUE	0229 0822 1425 2031	0.8 4.7 1.2 4.8				Pulau Kukup Tanjur Johor	
8	0153 0745 1353	0.8 4.8 0.8	16	0323 0946 1557	4.1 1.5 4.6	24	0256 0850 1450	1.1 4.4 1.6				Pasir G Tanju: Sunga	

WED

2056 4.5

ARAS PASANG SURUT PELABUHAN PIAWAI TIDAL LEVELS AT STANDARD PORT

				1	I	1	1			1)		
	erendah ical Tide	Min Spring	fin Neap		. Min r Neap	mi Min v Spring	: Tertinggi nical Tide	Pihal Aut	c Berkuas hority for	a (a) (a)	- e _		
abuhan Piawai ndard Port	Air Surut Falak T Lowest Astronom	Air Surut Perbani Mean Low Water	Air Surut Anak N Mean Low Water	Aras Laut Min Mean Sea Level	Air Pasang Anak Mean High Wate	Air Pasang Perba Mean High Wate	Air Pasang Falak Highest Astronoi	Cerapan Observations	Pemalar Constants	Ramalan Predictions	Tahun Cerapan Years of Tidal Observations (b		
	133.	m.	JN.	m.	ເກ.	m.	m.			DIAN	1001 04 (12)		
luk Ewa	0.00	0.56	1,46	1.82	2.18	3.07	3.56	DSM	RMN	RIMIN	2005 00 (4)		
ah	0.00	0.53	1.33	1.64	1.94	2.74	3.26	RMN	RMN	DMN	2003 - 09 (4) 2005 (6 mthe)		
ala Perlis	0.00	0.56	1.40	1.68	1,96	2.80	3.69	RMN	RMN	DMN	1080 - 63(13)		
dah Pier, Pulau Pinang	0.00	0.72	1,45	1,71	1.96	2.69	3.09	DSM	KMIN	DNAN	1989 = 0.5 (13) 2004 = 06 (17 mths)		
tterworth	0.00	0.77	1.48	1.72	1.96	2.67	3.06	RMN	DMN	DMN	2010 - 11 (18 mths)		
ala Sepetang	0.00	0.82	1.45	1.76	2.06	2.69	2.96	RMN	KMIN DMN	DMN	1080 - 03 (13)		
mut	0.00	0.75	1.45	1.85	2.24	2.94	3.45		RIVEN	DATE	1989 - 05(15)		
gan Datuk	0.00	0.52	1.25	1.72	2,20	2,93	3.48	I RMN	DMAN	D M N	1002 - 05(13)		
labuhan Klang	0.00	0.98	2.35	3.03	3.72	5.09	5.82		ECOLIN	DMA	1972 (1)		
rmatang Sedepa	0.00	0.85	2.08	2.71	3.34	4.57	5.31	115	HO ITC	DMN	1070(1)		
rt Dickson	0.00	0.31	1.14	1.55	1.96	2.79	3.51	115		DMN	2007 - 09 (17 mfbs)		
iala Linggi	0.00	0.31	0.96	1.29	1.61	2.27	2.91	DOM	DMN	DMIN	$1991 \circ 02(11)$		
njung Keling	0.00	0.29	0.88	1.19	1.51	2.10	2.05	DSM	ITS	DWN	1070(1)		
ala Batu Pahat	0.00	0.43	1.15	1.59	2.03	2.75	3.37	115		PMN	1979 (1)		
lau Pisang	0.00	0,42	1.26	1.77	2.28	3,12	3.79	DeM	DMN	RMN	1989 - 03 (13)		
ikup	0.00	0.37	1.21	1.70	2.20	3,04	3.08	DOM	DMN	PMN	2004 - 05 (14 mths)		
njung Pelepas	0.00	0.30	1.17	1.66	2.10	3.03	3.75	DSM	DMN	RMN	1990 - 03 (13)		
hor Bahru	0.00	0.99	1.67	2.20	2.73	3.41	4.00	DOM	DMN	RMN	1989 (1)		
sir Gudang	0.00	0.92	1.56	2.05	2.54	3.18	3.02	DAN	DMN	PMN	2010 - 13 (3)		
njung Langsat	0.00	0.93	1.56	2,07	2.58	3,20	3.71	DMAN	DMN	RMN	2004 - 05 (1)		
mgai Belungkor	0.00	0.99	1.61	2.11	2.60	5.22	5.80	KIVEN .	N IVI N	Kiyirx	1 2001 40 (1)		

HOURLY TIDAL DATA

KUAH, PULAU LANGKAWI, KEDAH DARUL AMAN

YEAR 2014

Lat 06 18 N Long 099 51 E

TIME ZONE -0800	MARCH	HEIGHTS IN METRES
Bour 00 01 02 03 04 05	06 07 08 09 10 11 12 13 14 15 16	17 18 19 20 21 22 23
1 Sa (92.9 2.8 2.4 1.8 1.2 0.6 2 Su 2.8 3.0 2.7 2.2 1.6 0.9 3 M 2.5 2.9 2.9 2.6 2.0 1.3 4 T 2.1 2.6 2.9 2.7 2.3 1.7 5 W 1.7 2.2 2.6 2.7 2.4 1.9	0.2 0.2 0.4 0.9 1.5 2.2 2.6 2.7 2.5 2.0 1.5 0.4 0.1 0.2 0.5 1.1 1.8 2.5 2.8 2.7 2.4 1.9 0.7 0.3 0.1 0.3 0.8 1.4 2.1 2.7 2.8 2.6 2.2 1.0 0.5 0.2 0.3 0.6 1.1 1.8 2.4 2.8 2.7 2.4 1.9 1.3 0.8 0.5 0.4 0.5 0.9 1.5 2.1 2.7 2.8 2.6 2.2	0.9 0.6 0.4 0.6 1.0 1.6 2.3 1.3 0.7 0.4 0.4 0.7 1.2 1.9 1.6 1.0 0.6 0.4 0.5 0.8 1.4 1.9 1.4 0.9 0.5 0.5 0.7 1.1 2.1 1.6 1.1 0.8 0.6 0.7 1.0
6 Th 1.4 1.9 2.3 2.5 2.4 2.0 7 F 1.2 1.6 1.9 2.2 2.2 2.0 8 Sa 1.2 1.4 1.7 1.9 1.9 1.9 9 Su (1.2 1.3 1.5 1.6 1.7 1.7 10 M 1.3 1.3 1.3 1.4 1.4 1.5	1.6 1.1 0.7 0.6 0.6 0.9 1.3 1.8 2.2 2.5 2.5 1.7 1.3 1.0 0.8 0.8 0.9 1.2 1.6 2.0 2.2 2.3 1.7 1.5 1.2 1.0 1.0 1.1 1.2 1.5 1.7 1.9 2.1 1.7 1.5 1.4 1.3 1.2 1.2 1.3 1.4 1.6 1.7 1.8 1.5 1.5 1.5 1.4 1.4 1.4 1.4 1.5 1.5 1.6	2.2 1.8 1.4 1.0 0.8 0.8 0.9 2.2 1.9 1.6 1.3 1.0 1.0 1.0 2.1 1.9 1.7 1.5 1.3 1.2 1.2 1.9 1.7 1.5 1.3 1.2 1.2 1.9 1.8 1.7 1.5 1.4 1.4 1.6 1.7 1.7 1.8 1.7 1.7 1.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.3 1.4 1.6 1.7 1.7 1.6 1.5 1.4 1.3 1.3 1.1 1.3 1.5 1.7 1.9 1.9 1.8 1.6 1.4 1.3 1.2 0.9 1.1 1.4 1.7 2.0 2.1 2.1 1.9 1.6 1.3 1.1 0.7 0.8 1.2 1.6 2.0 2.2 2.3 2.1 1.8 1.4 1.1 0.5 0.6 0.9 1.4 1.9 2.3 2.5 2.4 2.1 1.6 1.2	1.4 1.5 1.6 1.8 1.9 1.9 1.9 1.2 1.3 1.4 1.7 1.9 2.1 2.1 1.0 1.0 1.2 1.5 1.9 2.2 2.3 1.9 0.8 1.0 1.3 1.7 2.2 2.4 0.9 0.7 0.8 1.1 1.5 2.0 2.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.50.50.71.11.72.22.52.62.31.91.40.50.40.50.91.42.02.52.72.62.21.70.70.40.40.71.21.82.42.72.82.52.00.90.50.40.50.91.52.12.62.82.72.31.10.70.40.50.81.31.92.42.82.72.5	1.0 0.7 0.6 0.8 1.2 1.7 2.3 1.2 0.7 0.5 0.6 0.9 1.4 2.0 1.4 0.9 0.6 0.5 0.7 1.1 1.7 1.7 1.2 0.7 0.5 0.6 0.9 1.4 2.0 1.4 0.9 0.6 0.6 0.9 1.4
21 F 1.6 2.1 2.5 2.5 2.3 1.9 22 5a 1.4 1.8 2.2 2.4 2.3 2.0 23 su ()1.2 1.5 1.8 2.1 2.1 2.0 24 M 1.1 1.3 1.5 1.7 1.9 1.9 25 T 1.2 1.2 1.3 1.4 1.5 1.6	1.4 0.9 0.6 0.5 0.7 1.1 1.6 2.1 2.5 2.5 1.6 1.2 0.9 0.7 0.8 1.0 1.4 1.8 2.2 2.5 2.5 1.8 1.5 1.2 1.0 0.9 1.0 1.3 1.6 1.9 2.2 2.3 1.8 1.7 1.5 1.3 1.2 1.2 1.4 1.6 1.8 2.0 1.7 1.7 1.6 1.5 1.4 1.4 1.4 1.5 1.7	2.2 1.7 1.2 0.9 0.7 0.7 1.0 2.3 1.9 1.5 1.1 0.9 0.8 1.0 2.3 2.1 1.8 1.5 1.2 1.1 1.0 2.3 2.1 1.8 1.5 1.2 1.1 1.0 2.4 2.1 2.0 1.8 1.5 1.4 1.2 1.8 2.0 2.0 2.0 1.9 1.7 1.5
26 w 1.4 1.2 1.1 1.2 1.3 27 Th 1.7 1.4 1.1 0.9 0.9 0.9 28 F 2.1 1.7 1.3 1.0 0.7 0.6 29 Sa 2.5 2.2 1.7 1.2 0.7 0.5 30 Su 2.8 2.6 2.1 1.6 1.0 0.6	1.5 1.7 1.8 1.9 1.8 1.7 1.6 1.4 1.3 1.3 1.3 1.1 1.4 1.8 2.0 2.2 2.1 1.9 1.7 1.4 1.2 1.1 0.7 1.1 1.5 2.0 2.3 2.4 2.3 2.1 1.7 1.3 1.0 0.4 0.7 1.1 1.7 2.2 2.6 2.7 2.5 2.1 1.6 1.1 0.3 0.4 0.7 1.3 1.9 2.5 2.8 2.8 2.5 2.0 1.4	1.5 1.7 1.9 2.1 2.2 2.1 1.9 1.1 1.3 1.6 1.9 2.2 2.4 2.4 0.8 0.9 1.2 1.6 2.1 2.5 2.6 0.7 0.6 0.8 1.1 1.7 2.2 2.7 0.9 0.6 0.5 0.8 1.2 1.8 2.4
31 M 🏶 2.8 2.8 2.5 2.0 1.4 0.8	0.4 0.3 0.5 0.9 1.6 2.3 2.8 2.9 2.7 2.3 1.7	1.1. 0.7 0.4 0.5 0.9 1.4 2.1

KUAH, PULAU LANGKAWI, KEDAH DARUL AMAN

Lat 06 18 N Long 099 51 E

TIME ZONE -0800				TIMES AND HEIGHTS OF HIGH AND LOW WATERS								2014									
JANUARY FEBRUA					RUARY MARCH						APRIL										
Time m Time m			m Time m Tim				Time m: Time m Time m					Time m Time m				APDII					
1 0635 1225 w 1831	0.3 2.4 0.5	16 0026 0700 Th 1254 0 1846	2.6 0.4 2.3 0.6	1 0108 0749 Sa 1342 1954	3.0 0.0 2.6 0.4	16 ⁰¹⁰⁷ Su 1332 1934	2.7 0.3 2.5 0.5	1 0010 Sa 1245 • 1859	2.8 0.1 2.7 0.4	16 0012 0636 Su 1238 1846	2.6 0.4 2.6 0.6	1 0106 0729 T 1328 1954	2.8 0.3 2.9 0.4	16 ⁰⁰⁴⁷ ⁰⁷⁰⁴ ^{w 1307} ¹⁹³³	2.7 0.4 2.9 0.5		Time	m	Time	m	
2 0036 0720 Th 1311 1918	3.0 0.2 2.5 0.5	17 0057 F 1324 1916	2.7 0.4 2.3 0.6	2 0147 0825 Su 1420 2033	3.0 0.0 2.7 0.4	17 0135 M 1358 2004	2.7 0.3 2.5 0.5	2 0051 50 1322 1938	2.9 0.0 2.8 0.3	$17^{0042}_{{}^{0705}_{0705}}_{{}^{\rm M}{}^{1306}_{1917}}$	2.7 0.3 2.7 0.5	2 0140 0758 W 1359 2025	2.7 0.4 2.9 0.5	${ {17}_{0736}^{0121} \atop {7}_{0736}^{2} \atop {7}_{1338}^{2} \atop {2007}^{2} } } $	2.7 0.4 3.0 0.5	1	0106 0729 1328	2.8 0.3 2.9	16 0047 0704 W 1307	2.7 0.4 2.9	
3 0119 0803 F 1354 2003	3.0 0.1 2.6 0.5	18 0126 0755 Sa 1353 1946	2.7 0.4 2.4 0.6	3 0224 0858 M 1455 2108	2.9 0.1 2.6 0.5	$18 \begin{smallmatrix} 0201 \\ 0825 \\ T & 1424 \\ 2033 \end{smallmatrix}$	2.7 D.3 2.6 D.5	3 0127 0800 M 1355 2015	2.9 D.1 2.8 D.3	$18^{\tiny 0111}_{\scriptstyle 0733}\\ {}^{\rm T}_{\scriptstyle 1333}^{\scriptstyle 1333}_{\scriptstyle 1949}$	2.7 0.3 2.7 0.4	3 0213 0823 Th 1428 2052	2.6 0.5 2.8 0.6	$18^{0154}_{0806}{}_{^{F}1410}^{2040}{}_{^{2}040}^{2}{}_{^{0}}$	2.6 0.5 2.9 0.5		1954	0.4	1933	0.5	
4 0200 0843 5a 1437 2044	3.0 0.2 2.6 0.6	19 0153 Su 1420 2015	2.7 0.4 2.4 0.6	4 0259 7 1530 2139	2.7 0.3 2.5 0.7	$19^{0228}_{{}^{0851}_{W1453}_{2102}}$	2.6 0.3 2.5 0.6	4 0203 7 1427 2047	2.8 0.2 2.8 0.4	$19^{0140}_{W^{1400}_{2019}}$	2.7 0.3 2.8 0.5	4 0244 6844 F 1456 2116	2.4 0.7 2.6 0.7	$19^{\tiny 0231}_{\scriptstyle 0838} \\ {}^{\scriptscriptstyle 5a} 1445 \\ {}^{\scriptscriptstyle 2115} \\ 2115 \\ \end{array}$	2.5 0.6 2.8 0.6						
5 0239 50 0920 50 1518 2123	2.9 0.2 2.5 0.7	20 0220 M 1448 2045	2.7 0.4 2.4 0,7	5 0333 0951 W 1604 2208	2.5 0.5 2.3 0.8	20 0256 0914 Th 1522 2131	2.5 0.4 2.5 0,7	5 0237 0855 W 1458 2115	2.5 0.3 2.6 0.6	20 0210 0827 Th 1429 2049	2.6 0.4 2.7 0.5	$\begin{smallmatrix} 5 & _{0904} \\ _{5a} & _{1523} \\ _{2140} \\ \end{smallmatrix}$	2.2 0.8 2.4 0.9	20 0309 0909 5u 1523 2154	2.4 0.8 2.6 0.8						
6 0319 M 1500 2201	2.7 0.4 2.4 0.9	$2 \underset{\scriptscriptstyle T}{\underset{\scriptstyle 1517\\ \scriptstyle 2115}} \overset{\scriptscriptstyle 0246}{\underset{\scriptstyle 2115}{}}$	2.6 0.4 2.3 0.8	6 0407 1012 Th 1640 2241	2.2 0.7 2.2 1.0	21 0327 F 1555 2204	2,3 0,6 2,3 0,9	${ \begin{smallmatrix} 6 & 0308 \\ 0916 \\ Th & 1527 \\ 2139 \end{smallmatrix} }$	2.4 0.5 2.5 0.7	$21^{\tiny 0241}_{\scriptstyle 0853}_{\scriptscriptstyle F 1500}_{\scriptstyle 2120}$	2.5 0.5 2.6 0.6	6 0347 0925 Su 1551 2214	2.0 1.0 2.2 1.1	$21^{0356}_{\substack{0946\\1606\\2246}}$	2.2 1.0 2.4 1.0						
7 0357 1025 T 1643 2240	2.5 0.6 2.2 1.0	22 0314 0938 W 1549 2148	2.4 0.5 2.3 0.9	7 0443 F 1037 O 2335	1.9 0.9 2.0 1.2	$\underset{\substack{sa \\ 0}{2253}}{\overset{0403}{_{1008}}}$	2.1 0.8 2.2 1.0	7 0338 F 1555 2205	2.2 0.7 2.3 0.9	22 0314 0919 Sə 1533 2153	2.3 0.7 2.5 0.8	7 0431 0954 M 1629 0 2321	1.8 1.2 2.0 1.2	22^{0501}_{1040}	2.0 1.3 2.2						
8 0438 1057 W 1734 2332	2.2 0.8 2.1 1.2	23 0345 1007 Th 1628	2.3 0.7 2.2 1.0	8 0540 1119 Sa 1854	1.6 1.1 1.8	23 0453 1054 5u 1746	1.8 1.0 2.0	8 0409 5a 1627 2241	1.9 0.9 2.0 1.1	23 0353 0949 Su 1614 0 2240	2.1 0.9 2.3 1.0	8 0611 T 1807	1.6 1.4 1.8	23 0011 1 0651 1 w 1228 1 1847 2	1.1 1.9 1.4 2.1						
9 0528 1139 Th 1843	1.9 1.0 2.0	24 0423 F 1722 2328	2.0 0.8 2.1 1.1	9 0251 Su 1345 2108	1.2 1.5 1.3 1.8	$24^{0029}_{\scriptstyle{0640}\atop M 1238}_{\scriptstyle{1238}\atop 1945}$	$1.1 \\ 1.6 \\ 1.2 \\ 1.9$	9 0453 50 1022 50 1722	1.7 1.2 1.8	24 0449 1035 M 1716	1.9 1.1 2.1	9 0224 0906 W 1444 2052	1.3 1.7 1.5 1.8	24 0210 1 0842 2 Th 1446 1 2039 2	1.1 2.0 1.3 2.1						
10 0109 F 1254 2017	$1.3 \\ 1.7 \\ 1.1 \\ 2.0$	25 0523 58 1842	1.8 1.0 2.0	$10^{0434}_{\scriptstyle 1013} \atop {\scriptscriptstyle M}{\scriptstyle 1603}_{\scriptstyle 2219}$	$1.1 \\ 1.6 \\ 1.1 \\ 2.0$	$25^{0312}_{{}^{0914}_{7}}_{{}^{1510}_{2134}}$	1.0 1.7 1.1 2.1	$10^{0025}_{M\ 1153}_{1153}$	$1.3 \\ 1.5 \\ 1.4 \\ 1.7$	$25^{0015}_{0543}_{71224}_{1224}$	1.1 1.7 1.3 2.0	10 0340 Th 1600 2154	1.1 1.9 1.3 2.0	25 0326 0948 2 F 1603 1 2150 2	0.9 2.3 1.1 2.3						
11 0338 Sa 1454 2137	$1.2 \\ 1.6 \\ 1.1 \\ 2.1$	26 0119 D713 Su 1325 2025	$1.2 \\ 1.7 \\ 1.1 \\ 2.0$	$11_{\scriptscriptstyle \begin{smallmatrix} 1 & 0.512 \\ 1 & 1001 \\ 1 & 1653 \\ 2302 \\ \end{array}}$	0.9 1.8 1.0 2.2	$26^{0429}_{W_{1631}^{1032}}$	0.8 2.0 0.9 2.4	$11^{\tiny 0356}_{\scriptstyle 0957\atop T\ 1545\atop 2153}$	$1.1 \\ 1.6 \\ 1.3 \\ 1.9$	$26_{\scriptscriptstyle W}^{\scriptscriptstyle 0249}_{\scriptscriptstyle 0908}_{\scriptscriptstyle 1505}_{\scriptscriptstyle 2113}$	1.0 1.8 1.2 2.1	$\underset{\scriptscriptstyle F}{\underset{\scriptscriptstyle F}{\overset{0421}{_{1037}}}}_{\scriptscriptstyle F}$	0.9 2.2 1.1 2.2	26 0420 0 1035 2 58 1655 0 2242 2	0.7 2.5 0.9 2.5						
12 0444 Su 1612 2233	1.0 1.8 1.0 2.2	$27^{0333}_{\scriptstyle 0918}_{\rm M 1521}_{\scriptstyle 2150}$	$1.0 \\ 1.7 \\ 1.0 \\ 2.2$	$12^{0542}_{^{1136}}_{^{1729}}$	0.7 2.0 0.8 2.4	27 0521 1123 Th 1727 2326	0.5 2.3 0.7 2.6	12 0439 w 1637 2238	$ \begin{array}{c} 0.9 \\ 1.9 \\ 1.1 \\ 2.1 \end{array} $	27 0404 1017 Th 1621 2218	0.8 2.1 1.0 2.4	12 0454 1106 Se 1715 2308	0.B 2.4 0.9 2.4	27 0505 0 1115 2 Su 1741 0 2326 2	0.6 2.7 0.7 2.6						
$13^{0525}_{^{1109}}_{^{M}1701}_{^{2316}}$	0.8 1.9 0.9 2.4	$28^{_{1037}}_{_{7}}{}^{_{1637}}_{_{2251}}$	0.8 2.0 0.8 2.5	13 0610 1207 Th 1802	0.5 2.2 0.7	28 0606 F 1815	0.3 2.5 0.5	13 0509 1113 Th 1710 2311	0.8 2.1 0.9 2.3	28 0454 F 1103 F 1714 2307	0.6 2.4 0.8 2.6	13 0526 1135 Su 1749 2340	0.6 2.5 0.8 2.5	28 0546 1153 2 M 1623 0	0.5 2.8 0.6						
$14^{0559}_{{}^{1149}_{1149}}_{{}^{7}1740}_{2353}$	0.7 2.1 0.8 2.5	29 0538 w 1735 2340	0.5 2.2 0.6 2.7	14 0009 6 1237 1833	2.5 0.4 2.3 0.6			14 ⁰⁵³⁸ F 1742 2342	0.6 2.3 0.8 2.5	29 0538 5a 1800 2350	0.4 2.6 0.6 2.7	${\overset{M}{\overset{0559}{_{1205}}}}_{\circ}$	0.5 2.7 0.6	29 0006 T 1228 1900	2.6 0.5 2.9 0.5						
$15_{1223}_{1223} \atop{w}{}^{1814}_{1814}$	0.5 2.2 0.7	30 1624 Th 1825	0.3 2.4 0.5	15 0038 5a 1305 1904	2.6 0.3 2.4 0.5			15 0608 Sa 1813	0.5 2.4 0.7	30 0618 1221 Su 1841	0.3 2.8 0.4	15 0014 0631 T 1236 1858	2.6 0.5 2.8 0.5	30 0045 2 0657 0 w 1302 2 1935 0	2.6 0.5 2.9 0.5						
		31 0025 F 1302 F 1302	2.9 0.1 2.5 0.4							31 0029 0655 01255 1920	2.8 0.2 2.9 0.4										

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.

Problem

What is the water depth at •?

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.

www.utp.edu.my | **F D UTPOfficial**

© 2021 UNIVERSITI TEKNOLOGI PETRONAS

All rights reserved.