

MKAK1003-01

ENVIRONMENTAL MANAGEMENT SUSTAINABILITY

BY

DR.MOHD BADRUDDIN MOHD
YUSOF
mbadruddin@utm.my

ENVIRONMENTAL MANAGEMENT SUSTAINABILITY

These lecture materials are for the

Environmental Management Sustainability for Southeast Asia (MARE) (Project No. 610327-EPP-1-2019-DE-EPPKA2-CBHE-JP)

This project has been funded with support from the European Commission. This publication reflects the views only of the authors, and the Commission cannot be responsible for any use which may be made from the information contained herein.

Students are reminded that any file or attachment shared with you by your course lecturer is SOLELY for educational purpose and/or your personal and private study ONLY, and therefore cannot be shared with or disseminated to anyone else or uploaded on any website without permission or authorization of the copyright owner.

SYNOPSIS

This course is designed to expose students to various aspects of environmental management and the concept of sustainability. The topic discussed include the principles of sustainable development, understanding the environmentally sensitive area particularly the natural water bodies, catchment management, development of coastal and inland areas.

Current issues related to environmental problems especially climate change and water supply are the main aspects to be addressed. some of the methods and concepts of sustainable approaches are introduced in order to promote and achieve sustainable development goals.

At the end of the course, the students should be able to understand the concept of environmental sustainability and present it through effective communication. The course enables the students to understand, plan and incorporate the concept of sustainability in environmental management.

LESSON PLAN

01	WEEK	06	WEEK	11	WEEK
	Environmental Sustainability		Environmental sustainable approaches		Water footprint
02	WEEK	07	WEEK	12	WEEK
	Environmental issues and problems		Integrated river management system		Life cycle analysis
03	WEEK	08	WEEK	13	WEEK
	Classification of the natural environmental system;Soil		Mid-semester break		Carbon footprint; carbon credit
04	WEEK	09	WEEK	14	WEEK
	Classification of the natural environmental system; River		Water security		Green building
05	WEEK	10	WEEK	15	WEEK
	Classification of the natural environmental system; Swamp forest		Water security		Assignment and presentation

SUSTAINABILITY & DEVELOPMENT

01

SUSTAINABILITY

Can be defines as managing Earth and resources so that future generations may have hospitable conditions and a satisfactory standard of living for an indefinite period of time

02

SUSTAINABILITY DEVELOPMENT

The pattern of resources use, that aim to meet human needs while preserving the environment for present and future generation **Developments** that meet the needs of the present without the compromising ability of future generations to meet their own needs.

03

CONCEPT

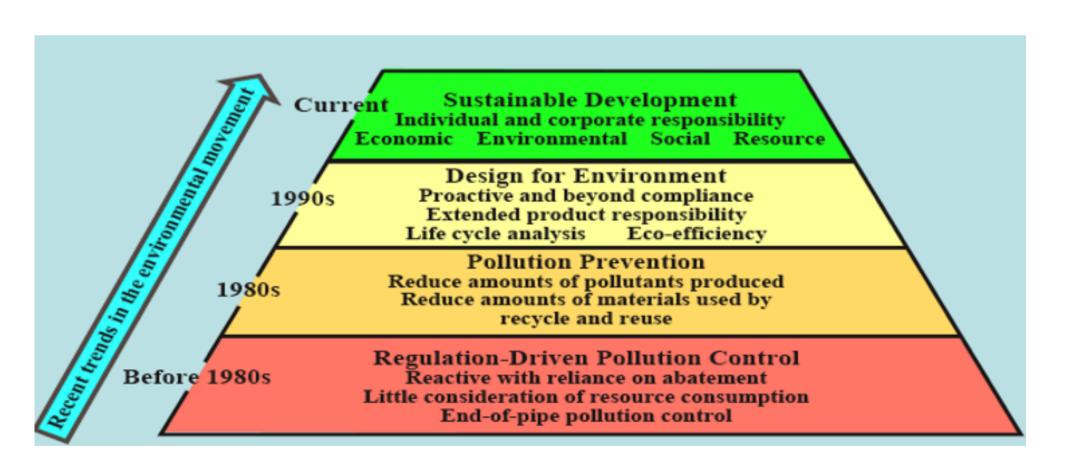
Encompasses ideas. aspirations and values that continue to inspire public and private organizations to better become stewards of the environment and positive promote economic growth and social objectives

04

ENVIRONMENTAL SUSTAINABILITY

The process of making sure current processes of interaction with the environment - the idea of keeping the environment as pristine as naturally possible

05


PRINCIPLES

Can stimulate technological innovation, advance competitiveness and improve quality of life. Able achieve to continuing economic prosperity while protecting the natural system of the planet and providing high quality of life for its people

ENVIRONMENTAL SUSTAINABILITY

The figure shows Evaluation of the environmental movement from pollution detection and treatment to sustainability

01	Involves reducing pollution, waste, and the consumption of natural resources by implementing an environment action plan.
02	Toward sustainability
03	Evolution of the environmental movement from pollution detection and treatment to sustainability

ENVIRONMENTAL ISSUES

01	GLOBAL WARMING	05	ENERGY	09	OVERPOPULATION
	burning of fossil fuels that pump C02 & other gasses into atmosphere		Energy conservation, renewable energy		burial
02	CONSERVATION	06	INTENSIVE FARMING	10	OZONE DEPLETION
	Species extiction, coral bleaching, invasive species		overgrazing, irrigation		cfc
03	CLIMATE CHANGES	07	LAND DEGRADATION	11	POLLUTION
	sea level rise, global dimming		land pollution, soil erosion, soil contamination		Llight, noise, and visual pollution
04	DAMS	80	NUCLEAR ISSUES	12	WASTE
	Environmental impacts of dams		nurclear fallout, radioactive waste		landfill, recycling, incineration

ADVERSE EFFECT OF GLOBAL WARMING

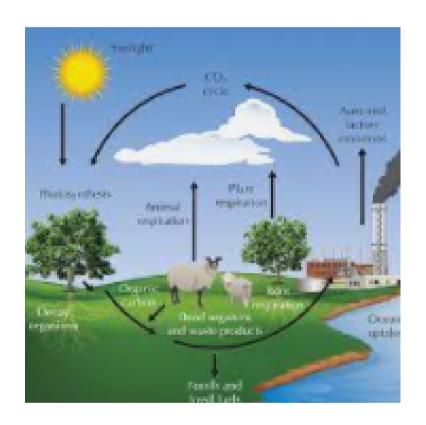
- Spread the disease
- Warmer water and more hurricane
- Increase the intensity of droughts and heat waves
- Economic consequences
- Polar ice cap melting
- More floods
- Destructive storms
- Desertification

- Tsunami and cold waves
- More outbreaks of deadly disease
- More dangerous thunderstom
- Loss of biodiversity and animal extinction
- Polar ice cap melting
- Death of ocean life
- Animal attacks
- Diminished food and water supplies



CLASSIFICATION OF NATURAL ENVIRONMENTAL SYSTEM

SOIL, STEEP SLOPES


LAKE AND LAKEFRONT

RIVERS

FLOODPLAINS

RIVERINE

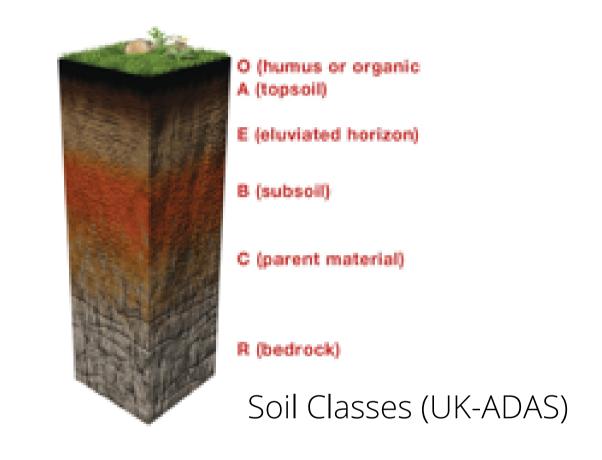
WATER CYCLE

NUTRIENT CYCLES

AQUATIC FOOD WEB

SOIL AND STEEP SLOPES

SOIL


develops over time by weathering of bedrock and the combined action of local climate and living organisms on bedrock and accumulated material

ALLUVIUM (COMMON SOIL)

consists of clay-loams, clay and silt, or coarse gravel and sands

SOURCES FOR WATER SUPPLY

large sands and gravel deposits that are saturated with groundwater

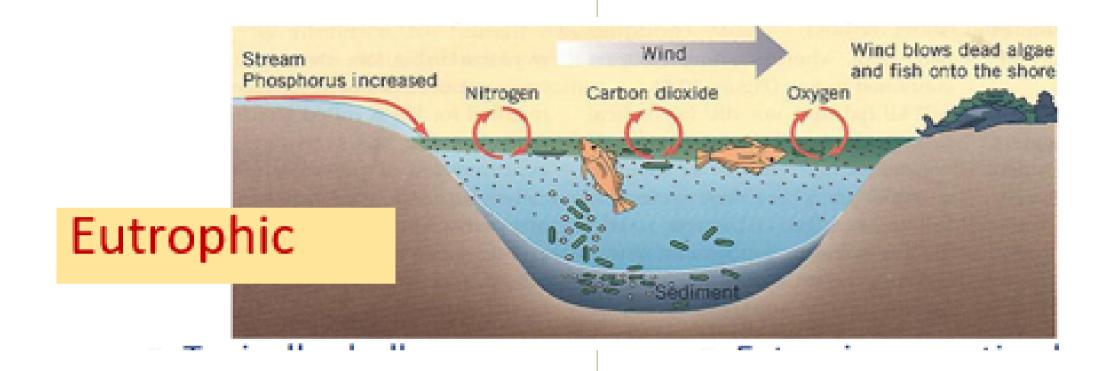
Steep Slopes

Erosion from the surface runoff is likely considerably more severe than on moderate slopes, and the weight of structures on steep hillsides may cause unstable soils to slump and weaken or crack foundations.

LAKE AND LAKEFRONT

LAKES

open bodies of slow moving water, not contact with the ocean


LAKE GEOLOGY

Basin area, shape, death Watershed size and mineral soils,

Basic water quality and sediment characterisitcs

EUTROPHICATION

the natural process in lakes the process of organic enrichment results from excess nutrients from runoff

the process of organic enrichment results from excess nutrients from runoff often causes the depletion of oxygen dissolved in the water, killing fish and most other animals.

can cause algal growth, a shift in food chains, oxygen depletion, and other undesirable effects on marine ecosystems.

Increase in the occurrence of blooms, which cause mass mortalities in a variety of marine organisms

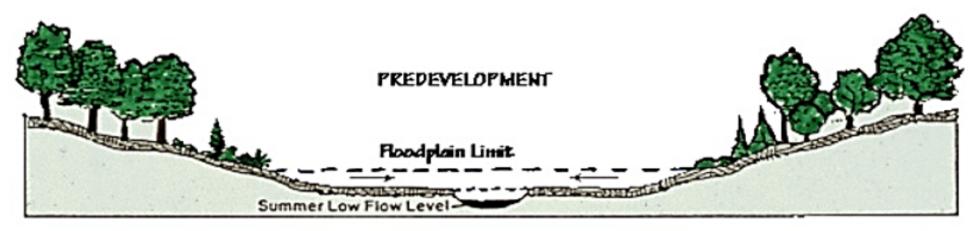
RIVERS AND FLOODPLAINS

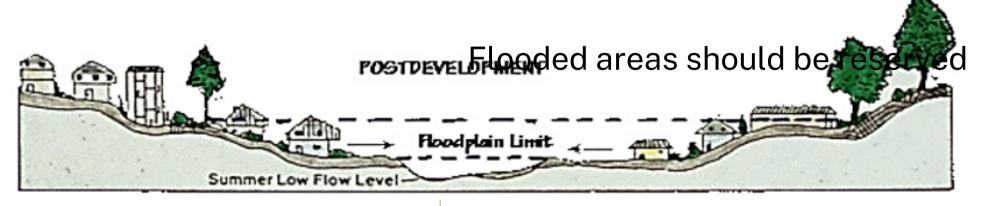
The Stream and Its Floodplain Before and After Development

This figure illustrates how upstream development can widen and lengthen the floodplain limit.

RIVERS

Flow over the relatively flat land border on broad flood plains


FLOODPLAINS


flat, land adjacent to a stram or river that experiences occasional flooding

FLOODPLAINS ARE FROMED IN 2 WAYS

- 1. By Erosion,
- 2. Aggradations

Response of Stream Geometry

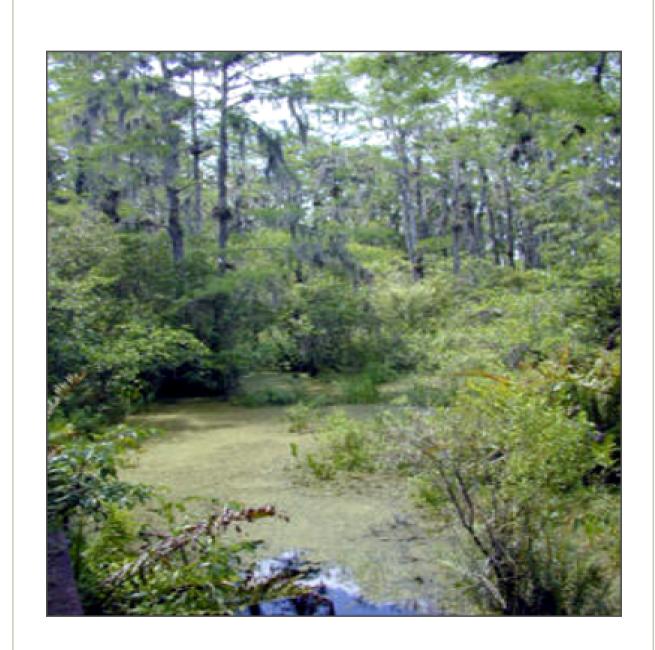
Development of floodplains may result:

- 1. Loss of life
- 2. Damage to property from floodwaters

The flooded area should be reserved for open space, recreation, wildlife, or agriculture

RIVERINE AND SWAMP FORESTS

SWAMP


a wetland that features permanent inundation of large areas of land by shallow bodies of water

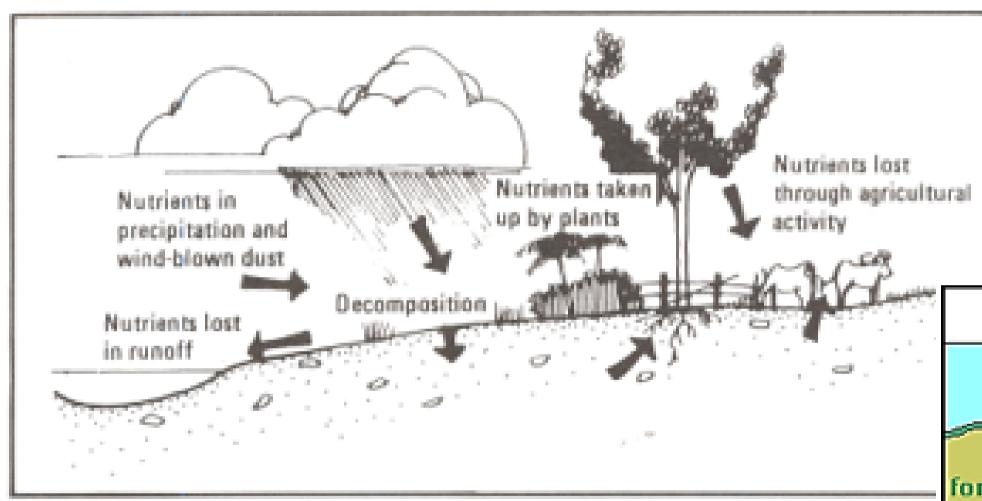
SWAMP FOREST

Including a large amount of woody vegetation

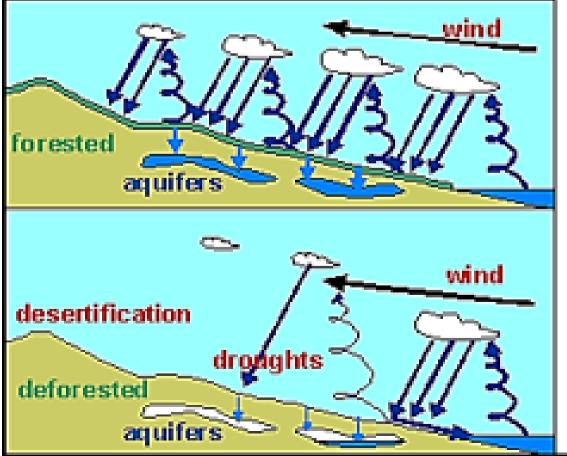
CHARACTERISTICS

very slow-moving water often rich in tannins from decaying vegetation associated with adjacent rivers or lakes

USE ROLES


absorbing and retaining flood waters preventing downstream floods trapping sediments and other poluution

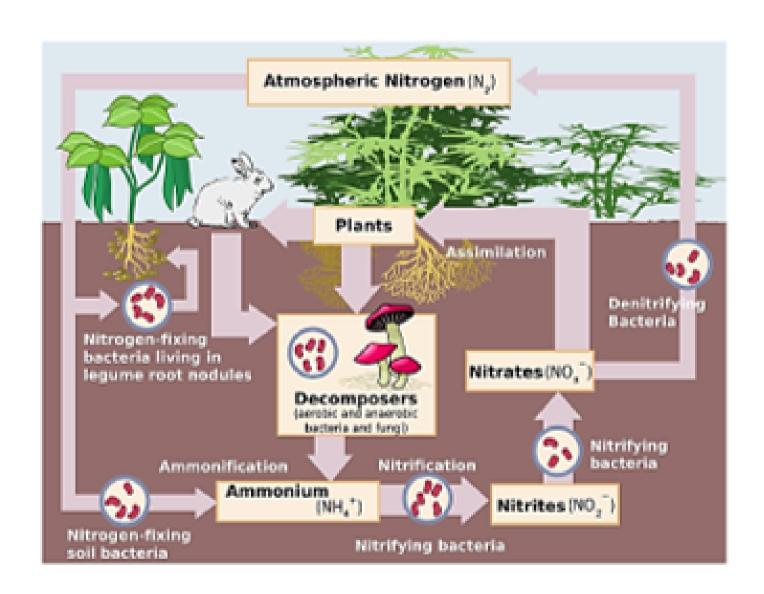
The soil is infertile and primarily organic matter


WATER CYCLE

Water evaporating from lakes, rivers and the ocean from clods; precipitation from the clouds completes the cycle

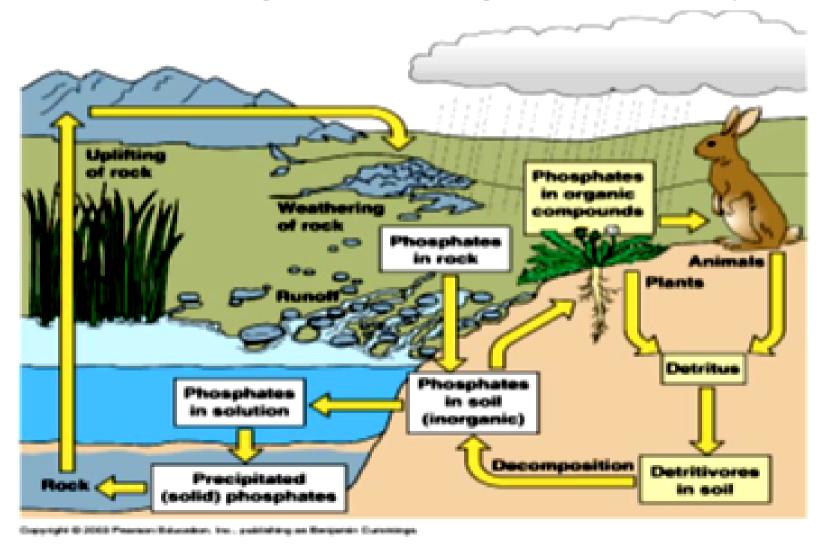
disrupting the water recycling

When the land was forested, the rains were sponged up and re-evaporated to form clouds and rain further inland. The water recycled many times. Human urbanisation and cropland caused the coastal rainwater to drain quickly, back to the sea. The water is resulting in droughts and desertification further inland. Aquifers dry up.


the water cycle provides a basic link between natural systems such as forests.

it is important to man in maintaining water supplies and removing degrading pollutants

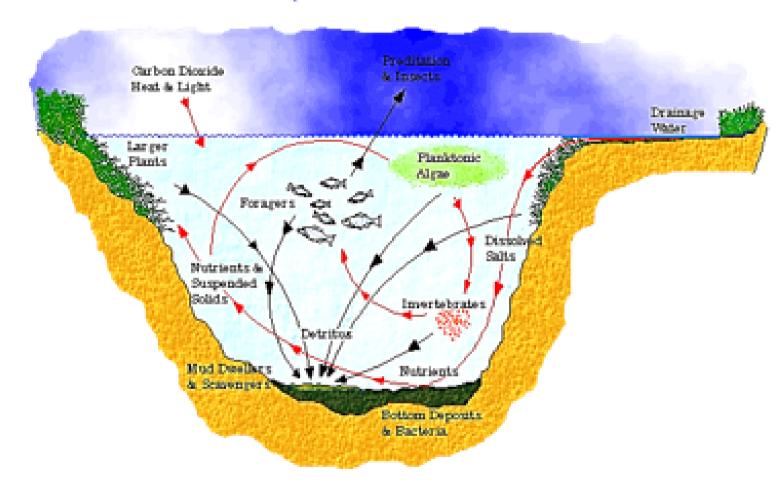
NUTRIENTS CYCLE



The environmental disturbance may cause more nutrients to be lost than added, upsetting the nutrient cycle of an area decreasing its productivity

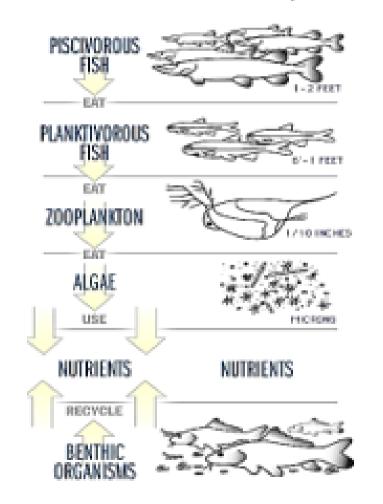
Including organic compounds and minerals is essential in maintaining natural systems.

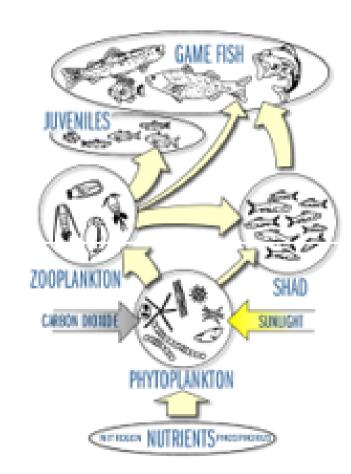
The nutrient cycle occurs through precipitation and windblown dust, and nutrients are lost through erosion and runoff, hunting and harvesting of trees and crops



AQUATIC FOOD WEB

Aquatic Food Web




The food web of coastlines and rivers begins with dead plant and animal matter flowing into rivers and estuaries from upland areas.

converted into food by shoreline vegetation, bacteriaa and minute floating plants

All aspects of the systems are interrelated, disruption of one part of the food web can affect many other parts

Aquatic Food Web

CLASSIFICATION OF COASTAL AREA DEVELOPMENT

ESTUARIES AND TIDAL WETLANDS

BEACHES AND SHORELINES

LOW LYING AREAS
BORDERING ESTUARIES
AND COASTLINES

ESTUARIES

01

ESTUARIES

are river mouths and bays where fresh and saltwater meet.

generally found at the end of rivers

saltwater is slightly heavier than freshwater, it is usually moving up the estuary beneath our flowing freshwater

02

ESTUARINE PLANT

including seagrasses, mangroves, and salt marshes, support a diverse range of estuarine habitats,

known as 'the nurseries of the sea': contain a large amount of food and shelter for fish and other animals

03

ROLES/FUNCTION

area for habitat, breeding and nursery areas for plants and animals

provide habitat for fish, birds, and other wildlife to live, feed and reproduce.

functions as biological productivity, (most biological productive area in the world)

MARE

WETLAND

01

CRITERIA

the area must be permanently or seasonally inundated

the area must support hydrophytic vegetation

the soil in the area must be waterlogged for a sufficient time to become anaerobic 02

TIDAL WETLAND SERVE AS

buffers against storms and typhoons

refuges for wildlife

nurseries for various forms of marine life

pollution filters, removing contaminants from water flowing through them

03

DEVELOPINGWETLAND

poses drainage and sometimes subsidence problems.

dredging of rivers and wetland often has numerous adverse impacts

MARE

BEACHES

01

BEACHES

Deposition
landforms, and the result of wave action by which waves or currents move sand or other loose sediments.

02

SHAPE OF BEACHES

Depends on whether the waves are constructive or destructive

Constructive waves: moves material up the beach

Destructive waves: move the material down the beach 03

EROSION

erosion and movement of sand above the shoreline is reduced by vegetation

manmade erosion results from sand extraction from river mouth and beaches, removal of mangrove, and infrastructure construction

SHORELINES

01

SHORES

are influenced by the topography of the surrounding landscape, as well as by water erosion such as waves

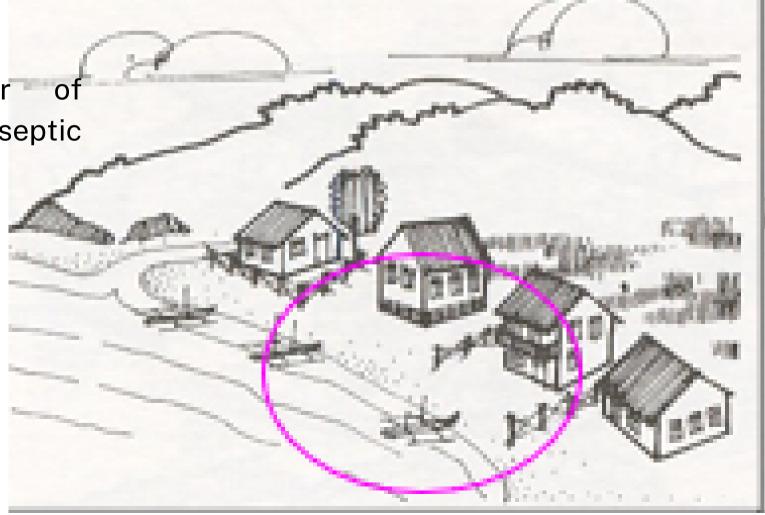
the sandy shoreline is an unstable environment that exposes plants and animals to harsh conditions.

02

COASTS

popular destinations because of recreational activities

- swimming
- fishing
- surfing
- boating
- sunbathing


03

DEVELOPMENT

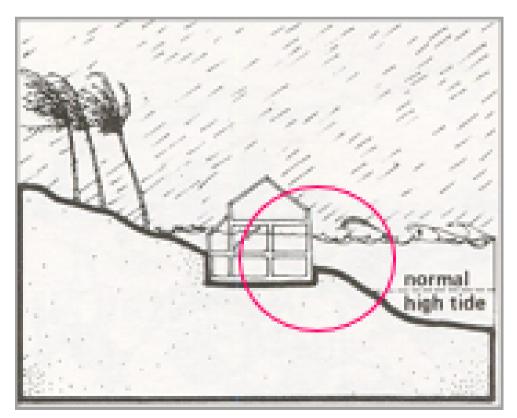
Causes loss to most

vegetation

increase danger of pollution from septic systems

LOW LYING AREAS BORDERING ESTUARIES AND COASTLINES

01


LOW LYING AREAS

maybe prone to periodic flooding and storm damage.

development should be limited to waterrelated activities such as recreation 02

SUSTAINABLE BEACH

often goes to the cycle of submersion during rough weather then accretion during calmer periods.

INTEGRATED RIVER BASIN MANAGEMENT

01

RIVER

body of inland water flowing for the most part of the surface of the land but which may flow underground for part of its course

02

RIVER BASIN

area of land from which all surface runoff flows through a sequence of streams, rivers, and possibly lakes into the sea at a single river mouth, estuary or delta

03

INTEGRATED RIVER BASIN

MANAGEMENT

the sustainable management of land and water based on natural geographical boundaries, rather than administrative units

04

OBJECTIVE IRBM

- 1. ensure clean water
- 2.ensure sufficient water
- 3. reduce flood risks
- 4.enhance environmental convnservation

WATER SECURITY

ability to access sufficient quantities of clean water to maintain adequate standards of food and goods production, proper sanitation, and sustainable health cear

DEFINITION

The reliable availability of an acceptable quantity and quality of water for health, livelihoods, and production, coupled with an acceptable level of water-related risks

WATER SECURITY

AREA THAT HAVE WATER INSECURITY

Places with low rainfall,

a place with rapid population growth in a freshwater scarce area

areas with international competition over a water sources

WAY TO PROVIDE WATER SECURITY

implementing water desalination

pipelines between sources and users

water licenses with different levels and war

COMMON THREAT TO WATER SECURITY

water scarcity

environmental threats

natural disaster

terrorism and radiation due to a nuclear accident

What is WaterSecurity?

"The capacity of a population to safeguard sustainable access to adequate quartities of acceptable quality water for sustaining livelihoods, human well-being, and socio-economic development, for ensuring protection against water-borne pollution and water-related disasters, and for preserving ecosystems in a climate of peace and political stability."

Working dofferlane, UW Works 2013

GOOD A ANCE

Adequate legal regimes, institutions, infrastructure and capacity are in place.

Sovereign states discuss and coordinate their actions to meet the varied and sometimes competing interests for mutual benefit.

DRINKING WATER AND HUMAN WELL-BEING

ECONOMIC

ACTIVITIES AND

EVELOPMENT

Populations have access to safe, sufficient and affordable water to meet best needs for drinking, sanitation and hypiene, to safeguard health and to fulfill best and to fulfill best human rights.

Adequate water supplies are available for food and energy production, industry, transport and tourism.

ECOSYSTEMS

ficesystems are preserved and can deliver their services, on which both nature and people rely, including the provision of freshwater.

PEACE AND POLITICAL STABILITY

WATER-RELATED HAZARDS AND CLIMATE CHANGE

Populations are resilient to water-related hazards including floods, droughts and pollution.

- Ins

FINANCING Innovative sources of ricing complement funding by the

financing complement funding by the public sector, including investments from the private sector and micro-financing schemes.

The negative effects of conflicts are avoided, including reduced water quality and/or quantity, compromised water infrastructure, human resources, related governance, and social or political systems.

Carbon Footprint

Global Warming Potential

Global Warming Life Cycle Assessment

CARBON FOOTPRINT/ **GHGs**

measurement of all greenhouse gases we individually produce and has units tonnes (or kg) of carbon dioxide equavalent

Greenhouse Gases (GHGs)

Carbon Label

CARBON FOOTPRINT

SOURCES

made up of the sum of two parts;

the primary and secondary footprint

PRIMARY CARBON FOOTPRINT

measure how much carbon dioxide is given out directly by energy consumption, so you are in control

eg: home appliances permenantly switch on,

SECONDARY CARBON FOOTPRINT

the measure of carbon dioxide given out that is not under your control by-products you consume

eg: the amount of fuel used if the train not full

WHY NEED TO CALCULATE

to report the footprint accurately to a third party

3 TYPES OF GHGs EMISSION

direct emission that results from activities the organizations controls

emission from the usage of electricity

indirect emission from products and services

GREEN BUILDING

01

DEFINITION

both structure and use of a process that is environmentally responsible and resource-efficient throughout a building's life cycle:

from siting to design, construction, operation, maintenance, renovation, and demolition

02

TAKING ADVANTAGE OF RENEWABLE RESOURCES

Using sunlight through passive solar, active solar, and photovoltaic equipment

using plants and trees through green roots, rain gardens

using packed gravel or permeable concrete instead of conventional concrete

03

OBJECTIVES

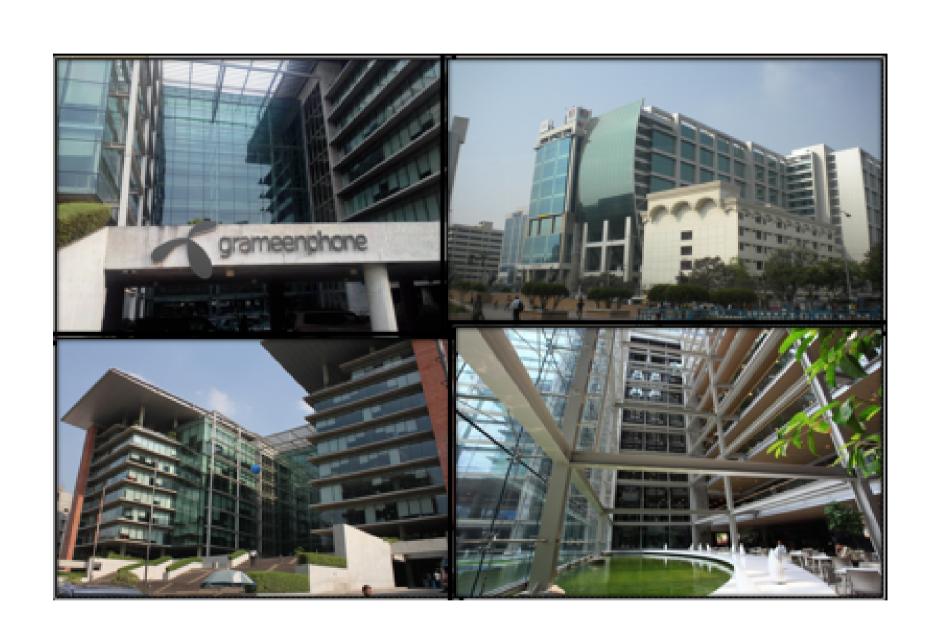
Efficiently using energy, water, and other resources

protecting occupant health and improving employee productivity

reducing waste, pollution and environmental degradation

04

ENERGY EFFICIENCY


- 1. Reduce energy consumption
- 2.specify highperformance windows and extra insulation in walls, ceiling, and floors
- 3.effective window placement can provide more natural light and lessen the need for electric lighting

Taipei 101, the tallest and largest green building in the world since 2011

Green building in Bangladesh

Thank You

www.utm.my

innovative • entrepreneurial • global